Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Mastaying Java web appleations with courage

oy
S

Yo

Jakarta ii.)
Struts

O'REILLY* Chuck Cavaness

The Book

The OReilly Struts book (title not set yet) will be available sometime in the 3rd quarter of
2002. Published by OReilly, this book covers both Struts 1.0 and 1.1. The beta or draft
chapters are being made available for download to facilitate an early public review
process for the material.

The Author

Chuck Cavaness is a Senior Technologist at the S1 Corporation. His expertise spans
server-side Java, distributed object computing, and application servers. Chuck is the most
recent moderator for the "Java in the Enterprise” discussion forum hosted by Javaworld.
He spent several years writing Smalltalk and CORBA applications, and he has taught
courses in object-oriented programming a Georgia Tech. He's written articles for
Javaworld and Informit.com. He has a so been the technical editor for many J2EE books,
including Using JavaServer Pages and Servlets (Que 2000) and Special Edition Using
Java 2 Enterprise Edition (Que 2001). Chuck earned his degree in computer science from
Georgia Tech. His current interests focus on building presentation-tier frameworks based
on the Apache Struts project.

Chuck is the co-author of Special Edition Using Enterprise JavaBeans 2.0 (Que, 2001)

and Special Edition Using Java 2 Standard Edition (Que, 2000). His next book, Struts
(O'Reilly, 2002), will be available sometime in the 3rd quarter.

Soread to you by Asmodeous <asmodeous/7@hotmail .com>

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table of
contents

Chapter 1

[T OAUCTTON. ... e 9
Brief History Of the WED ..o 9
What @re JAVa SENVIEIS?. ... 11
JavaServer Pages TEChNOIOOYcourieririeiririeresieee et 14
JSP Model 1 and Model 2 ArchiteCtUIES.........ooeerireireree e 16
Why is Model-View-Controller SO IMportant?........c.ccoeeveevenennieneneieseseese e 18
What iS 8 FrameWOIK?.........coiiieiiiriesesee s 20
Creation of the Struts FrameWOrK ..o 21
AREMNALIVES IO SEIULS ...ttt bbb 22

Chapter 2

INSidethe WeD Tier ..o 29
AN ArChitECIUrE OVEIVIBIWovieiiiriiisieseeee et 29
The HTTP Request/ReSPONSE Phasecocoiiiireereeese e 34
SUTULS QN SCOPE.....eviteeeterte ettt sttt sttt b e bbbttt b et st seebesbeneenens 40
USING URL Pal@MELErS......c.oiviieieiieieie sttt sttt sttt s 42
FOrward VErsUS RETITECL.........ccciiiiice e e 42

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Chapter 3

Overview of the StrutsFrameworKcccoccevvniineninnene 51
A Banking ACCOUNt EXAMPIE........coiiiiiiriiiririeeeee e 51
Looking @t the Big PICIUIe........ccviieiieiieeeie e 57
Struts Controller COMPONENES..........ciiireireretese et seeren 58
Struts Model COMPONENES.......c.eiieiiiriireeierie sttt ebe e neeneas 66
The Struts View COMPONENES......c.coiriieririeiresieesesie st 70
Multiple APPliCatiON SUPPOIT.........coveirerere ettt 81
SUMIMBIY ..ttt b e b e s e e r e bt bt b e e e e e s e e e renbeeneen e e e enne s 8l

Chapter 4

Configuring the Struts Applicationcccocevereereninniene 83
Introduction to the Storefront APPliCatioNccoeverireininere e 83
What isaWeD APPlICALTIONT?........ciiiiiiiirer e 85
The Web Application DireCtory SITUCEUME..........ooveereirireieeseeees e 86
Web Application Deployment DESCIIPLONcoeveireirerieieesieeee e 88
Configuring the web. Xml file fOr SITUESoociiineece e 91
The Struts Configuration File...........oocviriinee s 101
The org.apache.struts.config Package..........ccovverireninereee s 102
SUPULS CONSOIE TOOL ...ttt et bbbt 121
Reloading the Configuration FilES.........cccuivieeieieierene e 122

Chapter 5

Struts Controller CoOmpoNents.........cceevvreereneeneseenieseenn, 123

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Controller MEChANISIM..........ccuiiiiiiie e 124
The ULHITIES ClaSSES.eiviieiirierierte ettt 151

Chapter 6

Struts M odel Components.........ccceeceveriinieieneere e, 155
LI LAY T 1 Y L 155
What iSaBUSINESS ODJECE? ..ottt 160
PEISISIENCE. ...ttt bbb 162
What does Struts Offer For the Model ..o 163
Building the Storefront MOGEL ..o e 164

Chapter 7

StrutsView Components........coceverienerinseeniesee e, 190
What eXaCY ISQVIBW? ...t 190
What @re ACHONFOMMIS?.......c.oiiriiiriirieierie ettt 197
USING ACHONEITOIS......couiiiiiitirieistesieese sttt bttt 207
Performing Presentation Validation ... 212
Using DYNamiC ACLONFOMMIS.oiuiiririeirerieieesie sttt 213
Looking Ahead t0 JAVaSEIVEr FaCEScccviriirerieeeseee et 215

Chapter 9

Extending the Struts FrameworK............ccccoceoviiiniinienne, 218
What are EXtENSION POIMNES?.........cooieirreieseinesreee s 218
General EXTENSION POINSoccuiiieiieieeeie et 219
Controller EXENSION POINES.......c.oiiirierei et 222

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Extending View COMPONENES........ccoeiririeiririeeesie et 227
Extending the Model COMPONENES.........coeirireirerereeee e 228
Downsides to Extending the Framework.............ccccoeiininnininnceeeese e 231

Chapter 10

Exception HaNAliNgccooeeiinieiiieeeeeee e 232
Java EXCEption HanliNG.......coovveiiirieiiiiertseseee s 232
System versus Application EXCEPLIONS.........ccceriereneninenenese s 237
UsSing ChaiNed EXCEPLIONSc.ceivirieirerieirese et 238
Exception Handling provided by SEFULS..........coeiiiriiieeeeeeseee e 241
TYING UP the LOOSE ENGS......cooviiiiiiriciriiie et 253
EXCEPLIONS iN CUSIOM TGS, ...eveuertiieiirierieresieee ettt 254
Internationalized EXception HaNdliNg ..o 254
CONCIUSION. ...ttt et sttt sttt bbb 255

Chapter 11

Using the StrutsValidator ..., 256
The Need for aValidation Framework ... 256
Installing and Configuring the Validatorcccooierininninieeeseee e 257
Overview of Regular EXPreSSIONS........coivirieererieeneseeesie sttt sesnens 265
Using an Act i onFor mwith the Validator..........ccocooevveieciicce e 265
Using the Validator Framework ... 269
Creating your own Validation RUIES...........cccoveiiiiice et 270
The Validator and JSP CUStOM TagS......cccveiirirrieieeseesieeseeseeseeseesre e eee e snaesneas 272
Internationalizing the Validation............ccoceeieii e 275

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using the Validator OUtSide Of SEIULS..........coerieririeineeeee e 276

Chapter 12

Internationalization and StrUtS.........cocevereenenieneecee e 279
What iS INternationaliZation?...........oveiiireiirerrere s 280
SUPPOrt FOr TL8N 1N JAVA......eeeuiriiieierieiete ettt 281
Internationalizing your StrutS APpliCaLIONS..........ccvrerirerieririreeese e 288
Exception Handling and Internationalization...............cccveeenenncnenieieneneese e 292

G SRR RPR 293

Strutsand Enterprise JavaBeans (EJB)........c.cccceveeiennene, 293
Implementing the Storefront Service USING EJB........c.ocveieivinccneecseese e 295
INterfacing SIFULSTO EJB ..o 308

Chapter 14

USING THES . 320
Understanding TEMPIALES.......coueeririeirererre e 320
Installing and Configuring TilES........ccuviriiririerere e 326
OVENVIEW OF THES....eitiecieiiece bbb e ene 329
The TIeSTag LibIary ...t 332
USING DEFINITIONS ...ttt 340
Internationalization SUPPOrt With TIES........ccuviiririireee e 344

Chapter 16

Addressing Performance.........ccccoeeveneeninennenceseee e 346
What iS GOOd PErfOrMENCE?........cciiriiiririestese e 346

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Performance Versus Load TESHINGcccuveiririerinirieee e 348
Performance and Stress TeSting TOOIScvviriiririeieenieee e 350
Testing the Storefront APPHCALTIONcoiveirirerree s 351
Performance and Scalability GOtCha'Scovviiririeire e 359

Chapter 18

Loggingin a Struts Applicationcccceeevevenieneninneene 361
Logging in aWebh APPliCaLiONc.cviiriiirirere e 361
Using the Servlet Container for LOGQiNg........coervrereririerienieerieneeesesiee st 363
Jakarta ComMmMONS LOGGING....cveveuertereeierierieiesteseeesieseesesie e esie e sse e seese s seenesnes 374
USING the 10g4) PaCKAgE.........coeeirieirerierse e 377
Using Commons Logging in JSP PagES.........ccoeririirienieeeseseeesee s 385
Creating an Email APPENGETccoiiirieirereere e 387
The Performance Impact Of 1004covvereiiirirree s 396
Third-Party [0g4] EXIENSIONS.........ccciiiiiirieirienieire e 397
JAVA LA LOGUING APl ..ot 397

Chapter 20

Packaging Your Struts Application..........cccveeveierinnienne 399
To Package or NOt t0 PaCKagE..........coeeririeiiirereeere s 399
Deciding on How to Package Y our AppliCationccoeeevivenieenenieieneneeseseeee 402
Packaging the Struts Application a8 aWAR ... 407
Building your Struts ApplicationS With ANtccoeiririnnineeeree e 409
Creating an Automated Build ENVIroNmMent ..o 415
FTPIiNg and ReSLarting YOUI SEIVEScouuiiriirerieieesieeee st 417

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

1

| ntroduction

The Struts open source framework was created to make it easier for developers to build
web applications based on Java Serviet and JavaServer Pages (JSP) technologies. Just
like a building must have a solid foundation from which the rest of the structure can
grow, web applications should be built with the same principle in mind. The Struts
framework provides developers a unified framework from which Internet applications
can be based upon. By using Struts as the foundation, developers are able to concentrate
on building the business logic for the application.

The Struts framework was originally created by Craig R. McClanahan and added to the
Apache Software Foundation (ASF) in 2000. The project now has several committers
from around the world and there are many developers contributing to the overall good of
the framework. The Struts framework is one of many well-known and successful Apache
Jakarta projects. Others include Ant, Log4J, Tomcat, and many more. The overall
mission of the Jakarta project is to provide commercial-quality server solutions based on
the Java platform and in an open and cooperative fashion.

Brief History of the Web

No book on web technology would be complete without a brief look at how the World
Wide Web (WWW) has become as popular asit has today. The web has come along way
since the days when the first hypertext documents were sent to others over the Internet. In
1989, when the physicists at CERN laboratory proposed the idea of sharing research
information between researchers using hypertext documents, they had no idea of how big
and essential the web would become to the daily life for much of the industrialized world.
It has now become an accepted part of our vernacular.

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

It took a couple of years before the benefits of using the web became clear to others
outside of the CERN laboratories, but as we all know, it eventually erupted into what we
see and use today. From its beginnings, the web was designed for viewing hypertext
documents, not editing them. However, it was a natural evolution to want the ability to
also edit a document and submit the changes. In short time, the Common Gateway
Interface (CGI) was created. CGl is a standard that alows web servers to interact or
interface with external applications in such a way that hypertext pages no longer have to
be static. A CGI program can retrieve results from a database and insert those results as a
table in a hypertext document. Likewise, data entered into a hypertext page can also be
inserted into the database. This opened up infinite possibilities and in fact, started the
boon that was the Internet craze of the mid-nineties and lasts even today.

Although CGI applications are very good at what they do, there are some serious
limitations with its approach. For one thing, CGI applications are very resource-intensive.
For every request that comes from a browser, a new Operating System heavyweight
process is created to handle the request. Once the CGI script is finished executing, the
process has to be reclamed by the OS. This constant starting and stopping of
heavyweight processes is terribly inefficient. Y ou can imagine how bad the response time
might be if there are hundreds of concurrent users making requests to the same web
application. Another major limitation of CGI is that it can’t link to other stages of web
server request processing easily once it begins executing. Thisis because it’srunningin a
separate process from the web server and becomes difficult to handle things such as
authorization, workflow, and logging. Other limitations of CGl have to do with the
scripting languages available for CGI applications. Although CGI applications can be
built in many different languages, the Perl programming language has been widely used
to create web applications and in fact is still used by many Internet sites today. However,
many web devel opers wanted more out of aweb programming language.

There have been alternatives to standard CGI applications put forward. One is caled
FastCGl. FastCGl is alanguage independent extension to CGI that doesn’'t have the same
process model that standard CGI uses. It's able to create a single heavyweight process
for each FastCGI program, allowing multiple requests to run within the same process
space. However, when clients interact with the same FastCGI program concurrently, it
needs to create a pool of processes to handle each concurrent request. This is not much
better than standard CGI. Another problem with FastCGI applications is that it's only as
portable as the language in which they are written. Other solutions were provided by
mod_perl for Apache, NSAPI for Netscape, and ISAPI for Microsoft’s 1S web server.
While these solutions might offer better performance and scalability over standard CGlI
programs, they are very proprietary.

Around 1997, while the Java™ language was experiencing tremendous growth and use
by application developers, the Java Servlet technology was created. This new web
technology opened up an entirely new avenue for web developers to explore.

10

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

What are Java Servlets?

Java Servlets have become the mainstay for extending and enhancing web applications
using the Java platform. They provide a component-based, platform-independent method
for building web applications. Servlets don’'t suffer from the same performance
limitations that standard CGI applications incur. Servlets differ from the standard CGlI
threading model in that they create a single heavyweight process and allow each user
reguest to utilize a much lighter-weight thread, which is maintained by the JVM, to fulfill
the request. Many user requests can be threaded through the same instance of a servlet. A
servlet is mapped to one or more Uniform Resource Locators (URLS) and when the
server receives a request to one of the servlet URLS, the service method in the servlet is
invoked and responds. Because each user request is associated with a separate thread,
multiple threads or users, can invoke the service method at the same time. This multi-
threaded nature of servlets is one of the main reasons that they are much more scalable
than standard CGI applications. Since servlets are written in Java, they are also not
proprietary to a platform or OS.

Another significant advantage of being written in the Java language is that serviets are
able to exploit the entire suite of Java API's, including JDBC and EJB. This was one of
the factors in servlets becoming part of the mainstream so quickly. There was aready a
rich Java library in place for them to leverage. Characteristics such as garbage collection,
multi-threading, and the Java Collections libraries, and the other benefits of the Java
platform have propelled servlets far ahead of its peers for web devel opment.

Servlets are not executed directly by a web server. They require a serviet container,
sometimes referred to as a servlet engine, to host the servlet. This servlet container is
loosely coupled to a particular instance of a web server and together they cooperate to
service reguests. Figure 1-1 illustrates how a web server and servlet container cooperate
to service arequest from aweb browser.

11

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Web Server
Request for
JEP Page
Sendet
e
Container

Browser
For static The web sermear
docurments like 22:1::3“3:31
HTML, the web e s
server will service TEP-'IP:?G 5
the request, (i

communicate.

Figure 1-1. Serving a client request

Developers are free to choose from one of many servlet containers available to host their
servlet in. They are not locked into a particular vendor or platform. Servlets can be ported
to any one of these containers without recompiling the source code or making changes to
the servlet. This leads to selecting a Best of Breed solution for web applications, which
basically means that developers and organizations are free to choose specialized products
or components from one or more companies for an application. The developers get the
best of both worlds; the best product or component for a specialized need, while at the
same time avoiding the high risk normally associated with a single solution.

There are several popular choices for servlet containers on the market. Some are
standalone servlet containers that must be connected to an external web server to work
and others provide both the web server and servlet container within the same product.
There are even a few that are integrated into application servers and provide for much
more functionality than just a servlet container. Table 1-1 lists some of the more popular
servlet containers and a URL to get more information.

Table 1-1. Available Servlet Containers

Servlet Container URL

Bluestone http://www.bluestone.com
Borland Enterprise Server http://www.inprise.com
iPlanet Application Server http://www.iplanet.com
Orbix E2A (formally iPortal) http://www.iona.com
Jetty http://www.mortbay.com
JRun http://www.allaire.com

12

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Orion Application Server http://mww.orionserver.com

Resin http://www.caucho.com

SilverStream http://www.silverstream.com

Apache Tomat http://jakarta.apache.org/tomcat

Weblogic Application Server http://www.bea.com

WebSphere http://www-4.ibm.conm/sfotware/webservers/appserv

For a more complete listing of available serviet containers, visit Sun’'s servlet industry
momentum web site http://java.sun.com/products/servlet/industry.html.

Although servlets are great at what they do, it became apparent very quickly that
hardcoding HyperText Markup Language (HTML) output in a servlet as a response to a
request had some serious limitations. First and foremost, it was very hard to make
changes to the HTML because for every change, a recompilation of the servlet had to
take place.

Secondly, supporting different languages is difficult to do because the HTML is
hardcoded. Determining the user’s language, region, and optional variant and then
displaying the output is not easily accomplished. Many web applications built with
servlets avoid the entire issue of Internationalization” (118N) by having different servlets,
one for each supported Locale.

Finally, because HTML was embedded within the servlet, this caused a problem with
responsibilities. Web designers build HTML pages. They are not usually experienced
Java programmers, let alone skilled at object oriented design and programming. On the
other hand, Java programmers should do what they do best and this typically isn't
HTML. Although many developers have been crossed-trained in both skill sets, these are
two fields that are better left separated. By mixing HTML within the servlet itself, it
becomes very hard to separate the duties. Regardless of the skill set of the developers, it
becomes very difficult to separate the lines of development with this approach. Even
when a developer has the necessary skills to perform both functions, modifications to the
page layout meant recompilation, which adds to development time.

Obvioudly, servlet programming is such a broad topic; it can't be covered in great detail
here. If you fed that you need more information on Java Servlet technology, a great
source of material is Jason Hunter's Java Serviet Programming, 2™ edition book
published by OReilly. You can also find more information on the following web site:
http://java.sun.com/products/serviet/index.html.

The Servlet specification can be downloaded from the Sun serviet site at
http://java.sun.com/products/serviet/download.html.

" Internationalization is commonly referred to as 118N because the word begins with the letter I,
ends with the letter N and contains 18 charactersin between.

13

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

JavaServer Pages become the next step in the linear progression of developing web
technologies based on the Java platform. The introduction of JSP pages as they are
commonly referred to, help to aleviate the serviet limitations mentioned earlier and
opened up many new doors for web developers. Unfortunately, it produced just as many
uncertainties as well.

JavaServer Pages Technology

The first thing to understand about JavaServer Pages technology is that it's a natural
extension to the servlet technology. In fact, after some pre-processing by atranslator, JSP
pages end up being nothing more than a Java servlet. Thisis a point that many developers
have a hard time understanding in the beginning. JSP pages are text documents that have
a jsp extension and contain a combination of static HTML and Extensible Markup
Language (XML) like tags and scriptlets. The tags and scriptlets encapsulate the logic
that generates the content for the page. The jsp text files are pre-processed and are turned
into .java files. At this point, a Java compiler compiles the source and creates regular
servlet byte code that can be loaded and ran as a servlet.

The trandator that turns the jsp file into a .java file takes care of the tedious work in
creating a Java servlet from the JSP page. Figure 1-2 illustrates how a JSP page is
trandated and compiled into a servlet.

~—Web Container oo \

Request for
JSF Page The JSP
e
[Sendet . N
Contginer JSP Container Container
translates the
JSP file into & .
Browser Java Class file, HelloWorld java

/

Figure 1-2. A JSP page istranslated and compiled into a Java Serviet

HelloWord. class

JSP technology has become an extremely popular solution for building web applications
using the Java platform.

JSP offers several advantages over its competitors:

14

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

JSP is a specification, not a product. Vendors are alowed to build competing JSP
containers, which helpsin choosing a“ Best of Breed” approach.

JSP pages are compiled, not interpreted. This leads to better performance and more
efficient processing.

JSP pages support both scripting and access to the full Java language. JSP pages can
a so be extended through the use of custom tags.

JSP is an integral part of the J2EE suite of APIs and is compatible and
complimentary with all included technologies.

JSP pages share the "Write Once, Run Anywhere™" characteristics of Java
technology.

One of the limitations of hardcoding HTML inside of servliets mentioned in the previous
section is the problem of separating page design and application logic programming
responsibilities. This separation is easier to accomplish with JSP pages because HTML
designers are free to create web pages with whatever tools they are accustomed to. When
they are comfortable with the page layout, JSP developers are then able to insert JSP
scriptlets and custom tags and save the file with a .jsp extension. That's pretty much all
there is too it. When it comes time to change either the page layout or page logic, the
developer would modify the portion of the JSP page necessary and allow the JSP page to
automatically be recompiled. For HTML developers, many of today’s popular tools are
capable of working with JSP and custom tags.

15

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

JSP Scriptletsor Tag Libraries?

There are many developers who believe custom tags should be used in JSP
pages, rather than scriptlets or expressions. Therationaleis:

Scriptlets mix logic with presentation
Scriptlets break the separation of roles
Scriptlets make JSP pages difficult to read and maintain

Custom tags on the other hand centralize code in one place and help maintain
the separation of responsibilities. They also support the concept of reuse because
the same tag can be inserted into multiple pages, while having the
implementation reside in a single location. There's no redundancy or copy-and-
paste programming like there is with JSP scriptlets.

Together, JSP pages and servlets combine for an attractive alternative to other types of
dynamic web programming. Because they are both based on the Java language, they offer
platform independence, extensibility into the enterprise, and most importantly, ease of
development.

You can find more information about the JavaServer Pages technology at Sun JSP site:
http://java.sun.com/products/jsp. The JavaServer Pages specification can be downloaded
from http://java.sun.conVproducts/jsp/download.html.

JSP Model 1 and Mode 2 Architectures

The early JSP specifications presented two approaches for building web applications
using JSP technology. These two approaches were described in the specification as JSP
Model 1 and Model 2 architectures. Although the terms are no longer used in the JSP
specification, their usage throughout the web tier development community is still widely
used and referenced.

The two JSP architectures differed in several key areas. The major difference was how
and by which component the processing of a request was handled. With the Model 1
architecture, the JSP page handles al of the processing of the request and is also
responsible for displaying the output to the client. Thisis better seen in Figure 1-3.

16

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

~—Web Container =
User
Action 2
<JSP> f ~
(View} Java Beans
(Model)
_ System
Browser - Response

Figure 1-3. JSP Model 1 Architecture

Notice that in Figure 1-3 there is no servlet involved in the process. The client request is
sent directly to a JSP page, which may communicate with JavaBeans or other services,
but ultimately the JSP page selects the next page for the client. The next view is either
determined based on the JSP selected or parameters within the client’s request.

In direct comparison to the Model 1 approach, in the Model 2 architecture, the client
request is first intercepted by a servlet, most often referred to as a Controller serviet. The
servlet handles the initial processing of the request and also determines which JSP page
to display next. This approach isillustrated in Figure 1-4.

~—Web Container ™
Servlet
User _ | | (Controller) ——
Action S 2
4 L Y
,EL T Java Beans Data
Y 3 (Model)

- System <JSP>
Browser Response (View)

Figure 1-4. JSP Model 2 Architecture

As you can see from Figure 1-4, in the Model 2 architecture, a client never sends a
request directly to a JSP page. The controller serviet acts as sort of a traffic cop. This
allows the servlet to perform front-end processing like authentication and authorization,
centralized logging, and possibly help with Internationalization. Once processing of the
request has finished, the serviet directs the request to the appropriate JSP page. How
exactly the next page is determined can vary widely across different applications. For
example, in simpler applications, the next JSP page to display may be hardcoded in the
servlet based on the request, parameters, and current application state. In other more
sophisticated web applications, a workflow/rules engine may be used.

17

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

As you can see, the main difference between the two approaches is that the Model 2
architecture introduces a controller servlet that provides a single point of entry and also
encourages more reuse and extensibility than Model 1. With the Model 2 architecture,
there is also a clear separation of the business logic, presentation output, and request
processing. This separation is often referred to as a Model-View-Controller (MVC)
pattern. While the Model 2 architecture might seem overly complicated, it can actually
simplify an application greatly. Web applications built using the Model 2 approach are
generally easier to maintain and can be more extensible than comparable applications
built around the Model 1 architecture.

All of this doesn't mean that applications built using the Model 1 approach are
incorrectly designed. The Model 1 architecture might be the best decision for smaller
applications that have simple page navigation, no need for centralized features, and are
fairly static. However, for more larger enterprise-size web applications, it would be more
advantageous to utilize the Model 2 approach.

Why is M odel-View-Controller So Important?

Model-View-Controller is an architectural pattern that by it self has nothing to do with
web applications directly. As we saw from the previous section, the JSP Modedl 2
approach is clearly about separating responsibilities in a web application built using
Servlet and JSP technologies. Allowing a JSP page to handle the responsibilities of
receiving the request, executing some business logic, and then determining the next view
to display can really make for an unattractive JSP page, not to mention the problems this
entanglement causes for maintenance and extensibility. By having components within a
web application that have very clear and distinct responsibilities, the development and
mai ntenance on an application can be made more efficient. Thisis aso true for software
development as awhole.

The MVC pattern is categorized as a design pattern in many software design books.
Although there is usually much disagreement on the precise definition of the pattern,
there are some fundamental ideas.

The MV C pattern has three key components:

The Model Component
Responsible for the business domain state knowledge

The View Component
Responsible for a presentation view of the business domain

The Controller Component
Responsible for controlling flow and state of the user input

18

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Normally with the MV C pattern, there’s a form of event notification that takes place to
notify the view when some portion of the model changes. However, since a browser in a
typical web application has a stateless connection, the notification from the model to the
view can't easily occur. Of course, an application could perform some type of push action
to push data changes all the way to a client; but this doesn't and probably shouldn’t
happen in most web applications. A user can close at a browser anytime and there isn’t
warning or notification sent to the server. There's a great deal of overhead necessary to
management remote clients from the server side. This type of behavior is overkill for
typical B2C and B2B web applications.

With standard web applications, a client must perform another reguest back to the server
to learn about any changes to the model. For example, if a user is viewing the pricing
information for an item and at the same time, the administrator changes the price for that
item, the user isn't going to know this until they refresh the page or place the item into
their shopping cart.

TheMVC Model

Depending on the type of architecture of your application, the model portion of the MVC
pattern can take many different forms. In a two-tier application, where the web tier
interacts directly with a data store like a database, the model classes may be a set of
regular Java objects. These objects may be populated manually from a result set returned
by a database query or they can even be instantiated and populated automatically by an
Object-to-Relational Mapping (ORM) framework like TopLink or CocoBase.

In a more complex enterprise application where the web tier communicates with an EJB
server for example, the model portion of the MVC pattern might be Enterprise
JavaBeans. Although the EJB 2.0 Specification made some improvements in performance
through the use of local interfaces, there can still be a significant performance impact if
the web tier attempted to use entity beans directly as the model portion of the application.
In many cases, JavaBeans are returned from Session beans and used within the web tier.
These JavaBeans are commonly referred to as value objects and are used within the views
to build the dynamic content.

TheMVC View

The views within the web tier MV C pattern typically consist of HTML and JSP pages.
HTML pages are used to serve static content, while JSP pages can be used to serve both
static and dynamic content. Most dynamic content is generated in the web tier. However,

" Web applications are considered statel ess because the browser doesn’t typically maintain an open
socket to the web server. However, a web application may still maintain session data for a user or
even store data within the browser on behalf of the user.

19

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

some applications may require the need for client-side JavaScript. This does not interface
or infringe upon the MV C concept.

[Editors. This section istoo short and | will need to discuss this alittle more. Chapter 7 is
dedicated to discussing what Struts offers in the way of View Components. This section
should just discuss it from a generic web application point of view. Any feedback is
appreciated for this section]

TheMVC Controller

The controller portion of the web tier MVC design is generaly a Java serviet. The
controller in aweb tier application performs the following duties:

Intercepts HT TP requests from aclient.
Tranglates the request into a specific business operation to perform.
Either invokes the business operation itself or delegates to a handler.

Helps to select the next view to display to the client.

o W dp R

Returnsthe view to the client.

The Front Controller pattern, which is part of the J2EE Design Patterns , describes how a
web tier controller should be implemented. Since all client requests and responses go
through the controller, there is a centralized point of control for the web application. This
aides in maintenance and when adding new functionality. Code that would normally need
to be put in every JSP page can be put in the controller servlet, since it processes all
reguests. The controller also helps to decouple the presentation components (views) from
the business operations, which also aids devel opment.

What isa Framework?

| have been throwing the word framework around in this chapter without having really
defined what exactly it is or how it adds value in software development. In its ssimplest
form, aframework is a set of classes and interfaces that cooperate to solve a specific type
of software problem. A framework has the following characteristics:

A framework is made up of multiple classes or components, each of which may
provide an abstraction of some particular concept

The framework defines how these abstractions work together to solve a problem

" The J2EE Design Patterns can be found at http: //java.sun.com/blueprints/patter ns/index. html

20

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The framework components are reusable

A good framework should provide generic behavior that can be utilized across many
different types of applications.

There are many interpretations of what constitutes a framework. Some might consider the
classes and interfaces provided by the Java language a framework, but it's really a
library. There's a subtle, but very distinct difference between a software library and a
framework. With a software library, your application is the main code that executes and it
invokes routines on the library. With a framework, it contains the executing routines and
invokes operations onto your extensions through inheritance and other means. The places
where the framework can be extended are known as extension points. A framework is
commonly referred to an “upside-down” library because of the alternate manner in which
it operates. Figure 1-5 illustrates the subtle differences.

Framework Library 2
Library 1
Apslication 1 Application 2
Extensions Extensions Main Application
Application 3
Extensions
LIsing a Framewoark Lising a Library

Figure 1-5. A framework has subtle differencesfroma library

Creation of the Struts Framewor k

By now you should have a foundation for JSP and Servlet technology and you should
also understand the benefits that the Web MV C design and JSP Model 2 architecture adds
to a web application. This section provides a little background and history on the Struts
framework, which is an implementation of all of these ideas. This section will not leap
into any technical details of the framework; that's saved for the later in the book. I nstead,
this section will describe the conditions under which the framework itself was created
and how it has evolved over the past couple of years.

As was aready mentioned, the Struts framework was created by Craig R. McClanahan
and donated to the ASF in 2000. Craig is deeply involved in the expert groups for the

21

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Servlet and JSP specifications and has written a large portion of the Tomcat 4.0
implementation. He also speaks at various conferences, such as JavaOne and ApacheCon.

Since Struts was first created, there have been several committers to join the Struts
bandwagon, and even more developers that have volunteered their time and effort to
increase the value of the framework and keep it moving forward. The framework has
already gone through several beta releases and a couple of General Availability (GA)
releases and although there have been many new features added, the framework hasn’t
strayed far from the core idea.

The Struts group always welcomes new participants to the project. Any developer
wishing to contribute to the project only need to volunteer their time and knowledge and
that's al there isto it. To become a contributor, it's recommended that you first join the
Struts User mailing list. If you like what you see there, then take a look at the Struts
Developers mailing list. Thisis the best way to get started and become familiar with the
direction of the framework. You should read the mailing list guidelines first before
joining. You can find the guidelines at http://jakarta.apache.org/site/mail.html.

After reading the guidelines, you can join one or more of the Apache project mailing
lists, including Struts, from the URL: http://jakarta.apache.org/site/mail 2.htm.

The main project web site for Struts is located at http://jakarta.apache.org/struts. For
more information on downloading and installing Struts, see Appendix B.

Alternativesto Struts

Before we get too far into the Struts framework discussion in the coming chapters, we
should talk about what alternatives are available to using Struts. Since Struts is an
implementation of the Model 2 approach, you can safely assume that there are other
implementations available. The problem in trying to compare any two software products
in general is that feature sets are rarely ever the same. It's sometimes like trying to
compare “apples’ with “apples that have wheels’. The goal of the two may be the same,
but one may have features that are missing from the other.

Comparison between web application frameworks is made worse because many are open
source and have a tendency to vanish as quickly as they appear. That’s in no way saying
that open source projects are any more or less volatile than their well-funded
counterparts. It's true however, that you must be careful when choosing an open source
framework on which to base you entire project. Make sure that you have a copy of the

" A committer is a developer who provides expert direction and advice to steer the Struts
framework on the correct course. A committer has the ability to modify the source code repository
and can cast votes that affect the future of the framework.

22

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

source code, in case you ever have to take ownership in the complete maintenance of the
framework. It's always a valuable experience to compare feature sets of software
products, open source or not, when choosing any framework or component for an
application.

Because there are so many approaches to outputting a presentation view to a client, it's
very difficult to categorize the different approaches. The goal of this section is to briefly
introduce some other close and maybe not so close aternatives to Struts. Because
versions and features may change with each new release, you should do your own
research for the solution(s) that you are interested in. This list of alternatives is by no
means exhaustive. However, it will provide a launching pad for you to perform your own
research about alternatives.

The other point to make before we list the aternatives is that only solutions based on or
around the Java platform are listed. It's assumed that you know Microsoft offers a
competing technology based on Active Server Pages (ASP) technology, for example.
Although the goal of ASP is similar to JSP, ASP or ASP+ is not compared here. That's
better left for a book on JSP and Servlets. Even more so, the Struts framework goes way
beyond what is offered by JSP alone and comparing ASP or other similar technologies
would be the wrong comparison.

[Editors. | have done as much research on each of these technologies as time and
documentation has allowed. If you have used one or more of these, and have significant
prons and/or cons, please feel free to include them and | will update the section. I’ ve tried
to be fair, but was unable to really give any one afull test-drive.

I’m expecting this section to generate a great deal of positive and negative feedback as
everyone tries to get in their favorite framework. | understand that and ready for it. |
promise to update these sections during author review with the latest information that |
can find and sample.

If you fedl that | should just list each onein arow of atable and skip the commentary, let
me know and if the majority agrees, then I'll changeit.

chuck

1

Building your own framework

At first, it might seem strange to see “ Building your own framework” as an alternative to
Struts. Why in the world would you want to build something like this from scratch, when
it already exists in many different forms? The answer is the same reason the other open-
source or commercial products are started. The available selection of products might just
not be close enough to the desired framework and the decision is to build it in-house.
Other times, the decision is completely out of the developer’s hands and there’ s not much
of achoice. It's happened to al of us, at one time or another.

23

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There's a concept in software development called “The Not Invented Here Syndrome”.
It's where a software devel opment team refuses to use a particular technology or software
component that they didn’t create themselves. In many cases, locating and eliminating
dependencies is the correct course of action. If your application depended on a third-party
framework and that framework stopped being supported, that's a problem. Every
software package that an organization buys or gets from a third-party introduces more
risk into a project. Often, this additional risk is necessary. However, this is not always
true.

The best advice that one can give regarding building your own framework is to be honest
and ask yourself several questions.

1. Have | taken the time to inspect what's available and build a prototype using the
framework?

2. What does my application need that doesn’'t exist in one of the available
frameworks?

3. For anything that | need that isn’'t available in one of the frameworks, can | extend
the framework or find it from another source and add it?

4. Do | know as much about building this type of framework as the number of
developers that have been working on the available ones?

Depending on honest answers to these questions, you might find that building your own
framework isn't the best decision. A good guideline that many in the software
development industry agree with is that if it pertains to your core business, then build it in
house. If the software component is not directly related to your business, but is a generic
type of framework, then go get it from somewhere else. Play to your developer's
strengths and minimize their weaknesses.

Barracuda

The Barracuda presentation framework is a type of Model 2 architecture similar to
Struts, but seems to go a step further and provides a model event notification mechanism
Unlike with a strictly JSP approach, the Barracuda framework touts to have created a
template engine component, which is supposed to allow for more flexibility and
extensibility. The framework leverages code-content separation provided by the XMLC
approach of creating user interfaces. XMLC is a Java-based compiler that uses either an
HTML or XML document and creates Java classes that can recreate the document when
executed. The generated Java classes can be used to insert dynamic content into the
document at runtime by manipulating Document Object Model (DOM) interfaces. The
separation of markup and application logic alows for web designer to focus on markup
and programmers to focus on coding.

Arguably, the one downside to using a framework similar to this one is that it might be a
little steeper learning curve for developers, although one can argue that Struts is no walk

24

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

in the park. The involvement of XMLC and the fact that Java classes are created from
HTML or XML documents might confuse less experienced devel opers.

The Barracuda framework has recently been released 1.0. Y ou can find more information
on the Barracuda presentation framework at the URL :

http://barracuda.enhydra.org

Cocoon

Stefano Mazzocchi founded the Cocoon project in January 1999 as an open source
project under the ASF. The goa of Cocoon is to help the separation of content style,
logic, and management functions for an XML based web site. Cocoon leverages XML,
XSLT, and SAX technologies to help create, deploy, and maintain XML server
applications. Cocoon is currently at release 2.0. Most types of data sources, including
RDBMS, LDAP, File Systems, are supported. More information on Cocoon can be found
at the URL.:

http://xml.apache.org/cocoon

EXpresso

The Expresso framework from Jcorporate is an application development framework that
provides a component framework for developing database-driven web applications. The
Expresso framework can be integrated into Struts and adds capabilities for security,
Object-to-Relational Mapping (ORM), background job handling and scheduling, and
many other features. Expresso can be classified as a companion product to Struts, rather
than a competitor. It is currently asrelease 4.0

More information on the Expresso framework can be found at the following URL:

http://mawwv.jcor porate.com

Freemarker, Velocity, and WebMacro

These three products are grouped together because they all represent similar types of
template engines.

Freemarker isan open source HTML template engine for Java servlets. Y ou store HTML
in templates, which eventually get compiled into template objects. These template objects
then generate HTML dynamically, using data provided by servlets. It uses its own
template language and claims speeds approaching static HTML pages. The software is
free and licensed under the GNU Library Public License. It is currently at release 2.0.

25

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Velocity is a Java-based template engine that is similar in many ways to Freemarker.
Velocity is another Jakarta project similar to Struts.

Velocity's is capable of performing more functionality than just dynamic content for web
sites. It can generate SQL, PostScript, and XML from templates, for example. It can be
used either as a standalone utility for generating source code and reports, or as an
integrated component of other systems. Velocity also provides template services for the
Turbine web application framework. Many other frameworks either support the Velocity
scripting syntax or actually depend on it.

WebMacro is an open source Java servlet framework that claims to be used by several
large Internet web sites like AltaVista.com. The WebMacro framework uses a lightweight
scripting language that allows separation of how a page looks from the logic. WebMacro
can be ran in standalone mode or hooked in with a servlet container. It's currently at
release 1.0.

Y ou can find more information on each of these three products from the web sites listed
in Table 1-2.

Table 1.2. Template Engine URL’s

Product URL

Freemarker http://freemarker.sourceforge.net
Velocity http://jakarta.apache.org/velocity
WebMacro http://www.webmacro.org

Maverick MV C Framework

The Maverick MV C framework offers the ability to render views using JSP, the Velocity
scripting language, or Extensible Stylesheet Language Transformations (XSLT) directly.
Maverick is a MV C type architecture, but actually provides a view template mechanism.
It relies on one of the three scripting languages mentioned. One neat feature of Maverick
is that it can use reflection on your JavaBeans in the presentation layer to create a DOM
interface so that no XML generation or parsing is required. This alows for a little less
clutter and probably better performance when using XSLT to generate the views.

Y ou can find more information on the Maverick framework at the URL :

http://mav.sour ceforge.net

Sitemesh

SteMesh is basically a web page layout and integration system that aids is creating web
sites that need a consistent look and feel. What SiteMesh does is to intercept requests to

26

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

any web page, whether it's static or dynamically generated and parse the content and
generates afinal page. This processis based on the well-known Decorator™ pattern.

SiteMesh is built with Servlet, JSP, and XML technologies, which makes it appropriate
for J2EE applications. However it claims to aso be easy to integrate with other web
technologies such as CGI. More information on SiteMesh can be found at the URL :

http: //mwww.opensymphony.convsitemesh

Jakarta Turbine

Turbine is a servlet-based framework that is also an open source Jakarta project.
Currently, there isn't a great deal of documentation, however it does seem similar to
Struts with a few mgjor differences. For one thing, it doesn't seem to be coupled to JSP.
The focus seems to be to provide a collection of reusable components. There is a very
large set of components included with the framework, but they are quite disparate. It
seems to present more of a component library, but with the lacking documentation, it's
hard to get a good feel on the complete architecture.

More information on Turbine can be found at the URL :

http://jakarta.apache.org/turbine

WebWork

WebWork is a small web application framework that utilizes something called Pull
Hierarchical Model View Controller (HMVC). With a standard MV C design, changes
made to the model are sort of pushed to the view. In the case of WebWork, the views sort
of pull the data when they need it. Another interesting point is that WebWork doesn’t
seem to betied to a servlet; therefore it can support other types of clients like Swing.

More information on the WebWork framework can be found at the URL :

http: //sour cefor ge.net/proj ects/webwor k

JavaServer Faces

At the time of this writing, there is a Java Specification Request (JSR) to create a new
Javatechnology called JavaServer Faces. The specification defines the architecture and a

" The Decorator pattern is a structural design pattern mentioned in the book “ Design Patterns’
written by Gamma, Helm, Johnson, and Vlissides, affectionately known as the GangOfFour.

27

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

set of APIsfor the creation and maintenance of Java server web applications. Theideais
to create a standard set of JSP tags and Java classes that help developers create complex
HTML forms and other Graphical User Interface (GUI) components based on Servlet
and JSP technologies. 118N and input validation seems to be a big part of the intended
support.

JavaServer Faces will be a specification and not an actual implementation. It will define a
set of standard APIs and vendors will be able to create their own implementations and
therefore, developers will have more than a single implementation to choose from.

The JSR indicates that they are aware that other projects like Struts, have already
addressed many of the problems that this specification attempts to solve and that the JSR
is aimed at creating a standard that will help unify the fragmented area. You'll have to
keep you eye on this specification as it may have a huge impact on Struts and the entire
web application area as awhole.

More information on the specification can be found at the URL.:

http: //Amww.jcp.org/jsr/detail/127.jsp

28

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

2

Inside the Web Tier

This chapter describes the physical and logical aspects of designing and utilizing a web
tier for your applications. It discusses the close relationship that exists between the
architectural tiers and the responsibilities that each play in the overal application.
Special focus will be given to the web tier, which alows an application to communicate
and interoperate with clients over the web.

The Struts framework is based on the Java Servlet Technology and to a lesser extent,
JavaServer Pages, and therefore is dependent on a web container. For Struts devel opers,
understanding how the web container processes client requests is fundamental to having a
deeper understanding of the framework itself. This chapter illustrates the various
components that are part of the web container and what each component’s responsibilities
are.

An Architecture Overview

This section presents a high-level architecture view for a Struts application. Although this
section shows an architecture for an enterprise application, not all applications written
using Struts will be of this size and makeup. However, this type of application does allow
us to present many facets of how Struts applications may be configured.

Many applications, and J2EE application especially, can be described in terms of their
tiers. The application’s functionality is separated across these tiers, or functional layers,
to provide separation of responsibility, reuse, improved scalability, and many other
benefits. The separation of tiers may be a physical separation, where each one is located
on a separate hardware resource, or the separation may be purely logica. In this case,
one or more tiers are collocated on the same hardware resource, and the separation exists

29

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

in terms of software. Figure 2-1 illustrates the tiers that may be used by a typical Struts
application.

. - - - I ; Ry
(" Client Tier) 4 Middle Tier N EIS Tier
= 1
Firewsll r JNDI,
I[web ! IS,
[Container [Javahall -
| Web T |
|| (Serviets, | EJB
J5P Pages,
H e sy |] Container F—
Web ahXML l\ :
Service or
Foars S0AF i" | ﬂ (RDEMS,
: £ ERP,
| VLV' Legacy Apps,
| | CRMj}
Weab Tier |
REIIHEP_ = >
) —

_z' ' _J
Figure 2-1. Functional Application Tiers

Not every Struts application will contain all of the tiers illustrated in Figure 2-1. For
many smaller applications, the Middle tier may consist primarily of a web container that
interacts directly with a database in the Enterprise Information Systems (EIS) tier.

30

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

What is a Container?

There are many different types of containers. There are EJB Containers, Web
Containers, servlet containers, and so on. In general, containers provide a
hosting environment for software components to run in. Containers provide
genera services that can be used by the components within the environment,
without the need or worry of being required by the component developer. A
Web Container allows servlets, JSP components, and other Java classes to be
deployed and executed within the container. Services like JNDI, connection
pooling, and transaction services, can be configured at the container level, and
the component developers don’t have to worry about the management of these
resources, similar to the way in which EJB containers manages Security,
transactions, and bean pooling.

When using the services provided by a container, component developers may
have to give up some control of the environment to the container, in trade for
important services that the developers don’t have to worry about building.
Third-party vendors, who must follow certain guidelines that are explicitly laid
out in public specifications, build these containers. Although each vendor is
allowed to implement certain portions of the container in a proprietary manner,
they must follow the specification to ensure that portability can be achieved by
the developer.

TheClient Tier

The Client tier provides a means for a user to interact with the application. This
interaction may be through a web browser, or it could also be programmatic through a
web services interface. Regardless of the type of client, the interaction includes
submitting a request and receiving some type of response from the Middle tier.

In the case of the Struts framework, the most common type of client is a web browser.
However, it is also possible to have clients like wireless devices and Java Applets.

TheWeb Tier

Figure 2-1 shows the Middle tier as an aggregate of the Web tier plus some type of
application server component. In the case of Figure 2-1, an EJB container is shown.
These two tiers are often combined and many application servers include Web tier
functionality.

31

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Web tier provides the ability for the client tier to communicate and interact with
application logic that resides in other tiers. In more traditional web applications, it's not
uncommon for some or al of the application logic to reside in this tier. In larger,
enterprise-scale applications, the Web tier acts as a trandator and maps HTTP requests
into service invocations on the Middle tier.

The Web tier is also responsible for managing screen flow based on application and user
state. The Web tier communicates with either a database, or in the case of an enterprise
application, an application server. The Web Tier is the glue that binds client applications
to the core backend business systems.

The components that reside in the Web tier allow developers to extend the basic
functionality of a web service. In the case of Struts, it does this by utilizing framework
components that run in a servlet container.

TheMiddleTier

The Middle tier is often referred as the “application tier” or “server”. Thisis due in part
to the fact that there is often an application server within this tier. Not al Struts
applications have an application tier. This is especially true for small web applications.
Many small projects choose to forgo using a large application server and communicate
directly with a database or some other data store. When an application server is present,
the Web tier communicates to it using some variation of RMI. In the case where an EJB
server is present in the application tier, the communication protocol is RMI over 11OP.

32

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

RMI Over 110P

Remote Method Invocation (RMI) allows methods to be invoked on remote
objects. Java's implementation of RMI is known as Java Method Remote
Protocol (JRMP) has been around for quite some time and is specifically
designed for Java-to-Java remote communications.

One of the issues with Java’'s version of RMI is that a VM must be running on
both the client and server for it to be used. With the number of so-called legacy
applications that are written in languages such as C++, Java needed a way to
communicate with these systems. Thisis where RMI over 11OP helps out.

Internet Interoperability Protocol (I10OP) was designed to allow distributed
components to communicate with one another using TCP/IP. 1I1OP is language
and platform independent.

So, by using RMI on top of IIOP, Java can communicate with applications
written in many other different languages and on various platforms. RMI/I1OP
as it is often written, is required for all EJB servers to support and exists in the
EJB and J2EE specifications.

When included, the application tier might provide a more scalable, fault tolerant, and
highly available architecture. This of course, depends on many different factors. One of
the main purposes of using an application tier is to separate the responsibilities of
presentation from that of the model and the business rules for the application. Today,
many web applications are using EJB servers for their application tier. They may not be
utilizing all aspects of the J2EE architecture, like EJBs, but there are other benefits that
can be leveraged from a J2EE server.

The Enterprise Information System Tier (EIS)

The Enterprise Information System (EIS) tier contains data and services that are used
throughout the enterprise. It provides access to enterprise resource such as databases,
mainframes, Customer Relationship Management (CRM) applications, and resource
planning systems.

The middle tier communicates with components in the EIS tier using protocols that are
specific to that resource. For example, to communicate with a relational database, the
Middle tier will normally use a JDBC driver. For Enterprise Resource Planning (ERP)

33

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

systems, a proprietary adapter is used, although some ERP systems and other enterprise
resources are starting to support a more web service-like access approach.

Wher e does Struts Fit In?

After briefly examining these different tiers, it's important to understand which tier the
Struts framework exists in. As illustrated in Figure 2-2, the Struts framework resides in
the Web Tier.

) .)) I : ™~
(" Client Tier N 4 Middle Tier) EIS Tier
— = 1
Firewal F—
[JNDI,
I} weo IMS,
| Container | JavaMail -
e e 4
oy
| | Container Drivers
I
sWeT:r EOXML l\ (Serviets, |
Pese |\ SOAPTY| JSP Pages, ﬁ
[| HTML 2RaL} | | (RDEMS,
o & ERP,
l ‘q—v" Legacy Apps,
| N CRM)
Web Tier |
lel'ﬁzp_ - >
) _—

_J " vy
Figure 2-2. The Struts framework is used within the Web Tier

Struts applications are hosted by a web container and can make use of services provided
by the container, like handling requests via the HTTP and HTTPS protocol. This frees
developers up to focus on building applications that solve a business problem.

The HTTP Request/Response Phase

To better understand how the web server and servlet container work together to service
clients, this section discusses the protocol for a HTTP request and response, from the
time a client request is received until the server returns a response. This discussion is
necessary because Struts makes heavy use of the request and response objects throughout
the framework and a thorough understanding of the round-trip process will help to make
things more clear for discussions later in the book.

Although the browser is only one possible type of client that can be
used with Struts, it is certainly the most common. More and more
developers are starting to use Struts for wireless applications and even

34

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

some interaction with web services, however the web browser remains
the prominent client.

There are two types of HTTP messages, the request and the response. HTTP is based on a
request/response model. The browser opens a connection to a server and makes a request.
The server processes the client’ s request and returns a response. Figure 2-3 illustrates this
process.

1:HTTP Wab Container
Request
Web Browser 2:Process
FHTTE Request
Respanse

Figure 2-3. The HTTP request/response model

Both types of messages consist of a start line, zero or more header fields, and an empty
line, which indicates the end of the message headers. Both message types may aso
contain an optional message body.

The format and makeup of the request and response messages are very similar, but there
are afew differences. We'll discuss each one separately.

The HTTP Request

The start line of an HTTP request is known as the Request - Li ne. It's always the first
line of the request message and it contains three separate fields:

An HTTP method
A Universal Resource Identifier (URI)

An HTTP Protocol Version

Although there are several HT TP methods for retrieving data from a server, the two used
most often are GET and POST. The GET method requests a specified resource from the
server, indicated by the request URI. If the URI is a data producing resource, like a
servlet, the data will be returned within the response message. Although the GET
message can pass information in the query string, the POST method is used to explicitly
pass data to the server that can be used for processing by the request URI.

The Universal Resource Identifier (URI) identifies the resource that should process the
request. For the purposes of this discussion, it can either be an absolute path or arelative
one. A request with aninvalid URI will return an error code, typically a 404.

35

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The HTTP request protocol version is simply an identifier to the server of which version
of the HTTP specification the request conforms to. The following example illustrates the
request line for asample GET request.

| GET /index. htm HTTP/ 1.0

Y ou can actually execute this example by opening up a telnet session to a server running
aweb server. You must specify the host name and port number of the web server, such
as:

| tel net |ocal host 80

Y ou can then type the GET command. Y ou will need to press enter twice after issuing the
command; once for the end of the request line and then the other return isto let the server
know you are finished with the request. Assuming there’s afile called index.html in the
root directory, you will see the HTML response returned. Actually, you will always see a
response. It just may not be the one that you expected. We'll talk more about using the
telnet application to interact with a web server when we discuss redirects and forwards
later in this chapter.

As mentioned, the HTTP request may also contain zero or more header fields. Request
header fields allow the client to pass additional information about the request and also the
client itself, to the server. The format of a header field, for request and responses, is the
name of the header field, following by a colon “:” and the value. If multiple values are
specified for a single header field, they must be comma-separated. Table 2-1 shows some
of the more commonly used request headers.

Table 2-1. Common HTTP Request header fields

Name Purpose

Accept Used to indicate the media types, which are acceptable for the
response. If no Accept header field is present, the server can
safely assume that the client accepts all mediatypes. An
example of an Accept header valueis “image/gif, image/jpeg”.

Accept - Char set Used to indicate what character sets are acceptable for the
response. If the Accept - Char set header isnot present in
the request, the server can assume that any character set is
acceptable. The 1SO-8859-1 character set can be assumed to
be acceptable by all user agents.

Accept - Encodi ng This header isvery similar to the Accept header field, except
that it further restricts the content-coding values, which are
acceptable by the client. An example of an Accept -

Encodi ng header value is*“compress, gzip”.

Accept - Language Used to indicate which languages the client would prefer to
have the response in. An example of an Accept - Language
header valueis “en-us, de-li, es-us”.

36

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Cont ent - Encodi ng It helpsindicate what encoding mechanism has been applied
to the body of the message and therefore what decoding must
be used to get the information. An example of a Cont ent -
Encodi ng header valueis“gzip”.

Cont ent - Type Used to indicate the media type of the body sent to the
recipient. An example of aCont ent - Type header is
“text/html; charset=1SO-8859-1".

Host Used to indicate the host and port number of the resource
being requested, as obtained from the original URL. An
example of the Host request header is “www.somehost.com”.

Ref er er The Ref er er request header field alows the client to specify
the address (URI) of the resource from which the request URI
was obtained. It is mainly used for maintenance and tracking
purposes.

User - Agent TheUser - Agent request header field contains information
about the client that originated the request. It's mainly used for
statistical purposes and tracing of protocol violations. An
example of aUser - Agent is“Mozilla/4.0 (compatible;
MSIE 6.0; Windows NT 5.0)".

The message body for a request is used to carry data that is associated with the request to
the server. The data that is included within the body is different from the values used by
the header fields both in terms of format and content. The header fields can be viewed as
meta-data about the message body.

TheHTTP Response

Once the server has received and processed the request, it must return an HT TP response
message back to the client. The response message consists of a status line, zero or more
header fields, followed by an empty line. It may also have an optional message body,
similar to the request message.

The first line of the HTTP response message is known as the status line. It consists of the
HTTP protocol version that the response conforms to, followed by a numeric status code
and its textual explanation. Each field is separated by a space. An example response
status line is shown here:

| HTTP/ 1. 1 200 K

The status code is a 3 digit numeric value that corresponds to the result code of the
server's attempt to satisfy the request. The status code is for programmetic applications,
while the reason text is intended for human readers. The first digit of the status code
defines the category of the resulting code. Table 2-2 provides the allowed first digits and
the corresponding category.

37

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table 2-2.Satus Code Categories

Numeric Value M eaning

100-199 Informational — Request has been received, continuing to
processit.

200-299 Success — The action was successfully received, understood,
and accepted.

300-399 Redirection — Further action must be taken in order to
complete the request.

400-499 Client Error — The request contains bad syntax or cannot be
fulfilled.

500-599 Server Error — The server failed to fulfill an apparently valid
request.

There are quite afew status codes that have been defined. They are also extensible, which
allows applications to extend the behavior of the server. If a client application doesn’t
recognize a status code that has been returned by the server, it can assume the type of
response status by using the first digit of the returned status code. Table 2-3 lists some of
the most common response status codes.

Table 2-3. Common HTTP Response Satus Codes

Code M eaning
200 OK—The request has succeeded.
302 Moved Temporarily —The request resides temporarily under a

different URI. If the new URI is alocation, the location header field in
the response will give the new URL. Thisistypically used when the
client is being redirected.

400 Bad Request—The server couldn’t understand the request due to
malformed syntax.

401 Unauthorized—T he request requires authentication and/or
authorization.

403 Forbidden—The server understood the request, but for some reason is
refusing to fulfill it. The server may or may not reveal why it has
refused the request.

404 Not Found—The server has not found anything matching the request
URI.

500 Internal Server Error—The server encountered an unexpected condition

which prevented it from fulfilling the request.

The header fields in the response are similar in format to those found in the request
message. They allow the server to pass additional information to the client, which cannot
be placed in the status line. These fields give information about the server and about
further access to the URI contained within the request. After the last response header,

38

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

which is followed by an empty line, the server can insert the response message body. In
many cases, the response message body is HTML output. Figure 2-4 illustrates an
example response;

| GET /hello.htm HITP/ 1.0

mmand Prompt - telnet

HITF-/1.8 288 OK
Server: Resins2.8.5
ETag: "AAAAOxiweE4'
Last—-Modified: Mon. 84 Mar 2882 19:12:35 GMT
Expires: Mon, B84 Mar 2082 19:12:46 GHMT
Content-Type: text html
Content—Length: 189
: Mon,. B4 Mar 2082 19:12:49 GMI

<html>
<head>{title>Hello HTML File{/title>{~ head>

<hody>

Hello from the servert

Connection to host lost.

Press any key to continue...

Figure 2-4. An example HTTP response message

HTTPversusHTTPS

You've obviously noticed that the request and response message text shown in the
previous examples have al been standard readable text. This is fine for some cases,
however it also means that computer hackers can as well. When you need to ensure the
integrity and privacy of information that is sent over a network, especially an open one
like the Internet, one of the options is to use the HTTPS protocol, rather than standard
HTTP.

HTTPS is normal HTTP wrapped by a Secure Sockets Layer (SSL). SSL is a
communication system that ensures privacy when communicating with other SSL-
enabled applications. It's really just a protocol that runs on top of the TCP/IP layer. It
encrypts the data through the use of symmetric encryption and digital certificates. An
SSL connection can only be established between a client and server when both systems
are running in SSL mode and are able to authenticate each other.

The fact that the SSL layer encrypts the transmitted data has no impact on the underlying
request and response message. The encryption and subsequent decryption on the other
side occurs after the message is constructed and is decoupled from the HTTP portion of

the message.

Chapter 14 deals with security in a Struts application. HTTPS and SSL will be covered
more thoroughly there.

39

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Struts and Scope

The Struts framework utilizes various shared resource areas to store objects. The shared
resource areas all have alifetime and visibility rule that defines the scope of the resource.
This section discusses these resources, their scopes, and how the framework utilizes
them.

Request Scope

Each time a client issues an HTTP reguest, the server creates an object that implements
the javax.servlet. http. HtpServl et Request interface. Among other things, this
object contains a collection of key/value attribute pairs that can be used to store objects
for the lifetime of the request. The key of each pair isa St r i ng and the value can be any
type of Obj ect . The methods to store and retrieve objects into and out of the Request
scope are:

public void setAttribute(String name, Cbject obj);
public (bject getAttribute(String nane);

Request-scope attributes can be removed using the renoveAttribute() method,
however, because the scope of the attribute is only for the lifetime of the request, it is not
as important to remove them as it is for other request-scope attributes. Once the server
fulfills a request and a response is returned to the client, the request, and therefore the
attributes are no longer available to the client and may be garbage collected by the VM.

The Struts framework provides the ability to store JavaBeans into the request, so that they
can be used by presentation components like JSP pages. This makes it much easier to get
access to JavaBeans data, without having to do manual cleanup of removing the objects
later. The web container will take care of it for you. There’'s seldom a need to remove
objects from request scope. As you can see, the visibility of objects stored at the request
level is only for resources that have access to that request. Once the response has been
returned to the client, the visibility is gone. Objects that are stored in one request are not
visible to any other client request.

Session Scope

The next higher level of visibility is session scope. The web container will create an
object that implements the j avax. servlet. http. H t pSessi on interface to
identify a user across multiple page requests. The user’s session will persist for a period
of time that is based on how frequent the user makes a request. This allowed inactivity
time is configurable through the application deployment descriptor. It may also be
prematurely destroyed by calling thei nval i dat e() method on the session object.

The session also alows for a collection of objects to be stored based on a key/value pair
schema, similar to the request object. The only difference between this one and the one

40

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

provided by the request is the duration of the objects. Since sessions exist across multiple
requests, objects stored in the session scope live longer than those at the request level.
The Struts framework uses session attributes quite extensively. An example of an object
that may be stored as a session attribute is the Local e object for the user. This allows
the entire framework access to the user's locale to perform localized behavior. Objects
stored in one user’s session are not visible to users with a different session.

There is no synchronization provided by container for the session
object. If multiple threads attempt to access an object stored in the
session and modify the value, it's up to the developer to provide
synchronization. There is no automatic synchronization provided by the
session. Although the need to synchronize access to the session is quite
low, you must realize that the developer has the responsibility to
protect the resources. Scenarios where multiple threads might access
the session at the same are if your application uses frames, or if you
have a process takes a long time to complete. Both of these situations
could cause more than one thread to attempt to access the same session
attribute.

Application Scope

An even higher level of visibility and duration comes with objects stored at the
application scope level. These are objects that are visible to all client and threads of the
current web application. They live until they are programmatically removed or until the
application is terminated.

The server creates an object that implements the
javax. servl et . Servl et Cont ext interface for each and every web application
that isinstalled within the container. The Ser vl et Cont ext object allows objects to be
stored and retrieved exactly like they are done for the request and session scopes, with the
one difference being that the objects are visible to the entire application and persist for
the lifetime of the application. The Struts framework uses application scope to store
JavaBeans that need to be visible to all users. Normally, objects are stored in this scope
during application startup and remain there until the application exits.

Page Scope

The last scope to discuss has to do exclusively with JSP pages and is referred to as page
scope. Objects with page scope are only accessible within the JSP page that they are
created. Once the response is sent to the client or the page forwards to another resource,
the objects ae no longer availablee The objects are stored in the
j avax. servl et.] sp. PageCont ext object for each page.

41

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Every JSP page has an implicit object reference named pageCont ext that can be used
to store and retrieve page-level objects. It includes the same get Attri bute() and
set Attribute() methods that the other scopes offer and function in the same
manner.

Using URL Parameters

Request’ parameters are strings that are sent with the client request to the server. The
parameters are inserted into the Ht t pSer vl et Request object from the URI query
string and data that is sent in a POST method. The parameters are formatted as key/value
pairs.

URL parameters are only available via the get Par anet er () method when a POST
method is used. If the HTTP method is a GET, the only way the server can gain access to
the parameters included in the query string is by parsing the String returned from the
get Pat hl nf o() or get Request URI () methods.

URL parameters play an important role in all web applications and the Struts framework
is no exception.

Forward ver sus Redirect

It's often necessary to share control of a request by more than a single component. One
servlet may be responsible for authenticating and authorizing a client, while it’s the job of
adifferent servlet to retrieve some data for the user. This sharing of control of arequest is
accomplished in several different ways. Two of which, we want to discussin this section.

There are several important differences between how a web container processes a
forward request versus a redirect. Since the Struts front controller servlet, which was
discussed in Chapter 1, will always perform one or the other for a typical request, it's
important that you understand these differences and the impact that each mechanism will
have on your application.

How a Redirect Works

When a sendRedi rect () method is invoked, it causes the web container to return a
response back to the browser with information that a new URL should be requested.
Because the browser issues a completely new request, any objects that are stored as

" URL parameters are often referred to as query or request parameters.

42

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

request attributes before the redirect occurs, will be lost. This is one of the biggest
differences between a forward and redirect. Figure 2-5 illustrates why this occurs.

1:HTTP .
Raquast o Web Container

¥ 302 Response Returnad
Web Browser

Y

4: Mew Reguest Sent

SHTIP
Response

&

Figure 2-5.A redirect causes the browser to issue a new request

Because of the extra round-trip that occurs, a redirect is slower than using a forward.
Example 2-1 provides an example servlet that performs a redirect for a JSP page called
result.jsp, when arequest isissued for the servlet.

Example 2-1. A Java serviet that performs a redirect when it receives a regquest

package comoreilly. struts. chapter2exanpl es;

inport java.io.|CException;

i nport javax.servlet. Servl et Exception;

inmport javax.servlet.http. HtpServlet;

inport javax.servlet.http. HtpServl et Request;
i nport javax.servlet.http. HtpServl et Response;
i nport javax. servl et. Request D spat cher;

/**
* Performa redirect for the page "redirect.jsp"
*/
public class RedirectServlet extends HtpServlet {

throws Servl et Exception, | CException{
redirect(request, response);

}

throws Servl et Exception, | CException{
redirect(request, response);

}

/**

* to themduring a redirect.

*/

protected void redirect (HtpServl et Request req, HtpServl et Response resp)
throws Servl et Exception, | CException{
log("Arequest arrived for " + req.getServletPath());

/1 Put some objects into request scope

43

public void doGet (HtpServl et Request request, HtpServl et Response response)

public void doPost (HtpServl et Request request, HtpServl et Response response)

* Set a few URL paraneters and objects for the request to see what happens

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

req.setAttribute("firstNane", "John");
reg.setAttribute("lastNane", "Doe");

String context Pat h
String redirectStr

reg. get Cont ext Pat h() ;
context Path + "/result.] sp?user nane=f oo&passwor d=bar";

log("redirecting to " + redirectStr);

/1 A ways call the encodeRedirect UL met hod when perfoning a redirect
resp. sendRedi rect (resp. encodeRedi rect URL(redirect Str));

}

}

When the servlet in example 2-1 receives either a GET or POST request, it calls the
redirect () method and passes the HITPServl et Request and
HTTPSer vl et Response objects to it. The method sets two St r i ng objects into the
reguest so that it can be demonstrated that they will not be available after the redirect. It
creates a String that will become the URL that the client is told to make a new request
for. After the encodeRedi rect URL() method is called and passed the redirect
string, the sendRedi r ect () method isinvoked on the response object.

All URLs passed to the sendRedi r ect () method should be ran
through the encodeRedi r ect URL() method so that the Session 1D
can be included if the browser doesn’t support cookies and session
tracking needs to occur. The Struts framework performs this step
automatically in the Request Processer during normally action
processing.

The JSP page that the servlet will redirect to is shown is example 2-2.

Example 2-2. A simple JSP page that a client isredirected to when calling the
RedirectServiet from example 2-1

<htm >

<head>

<title>Struts Redirect/Forward Exanple</title>
</ head>

<body>
<i ng src="i mages\tontat - power. gi f">
<pbr>
<%
String firstName = (String)request.getAttribute("firstName");
if (firstName == null){
firstName = "Not found in request";
}

String lastNane = (String)request.getAttribute("l ast Nane");
if (lastNane == null){

lastName = "Not found in request”;
}

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

%

Fi rst Nane: </ b> <%first Nanme%

Last Nane: </ b> <%l ast Nane%

</ body>
</htm >

When you enter the URL for this servlet in a browser:
http://local host: 8080/serviet/com.oreilly.struts.chapter 2exampl es.RedirectServiet

The browser output will look like the onein Figure 2-6.

/4 struts Redirect,/Forward Example - Microsoft Internet Explorer o] 4
J File Edit Wiew Faworites Tools Help ﬁ
| at Q >
Back, Farward Stop Refresh Home Search
J Address Iﬂj http: fflocalhost: 5050 servlet/conm . areilly . struts, chapter 2examplas, Redirect Servlet j
=
Powered by
k_
TOMCAT
First Name: Mot found in request
Last Name: Not found in request
[
|§| Done l_ l_ l_ Local intranet S

Figure 2-6. The output page when the RedirectServiet is called

You'll notice that the first name and last name arguments that were set in the servlet were
not found in the request. This is because a second request was actually issued for this
page. Fortunately, we can peek behind the scenes and observe what’ s taking place.

Let's look at the HTTP response that comes back to the client when the
Redi r ect Ser vl et isreguested. We can see this using a standard telnet session. Since
an HTTP connection uses a simple network socket to communicate with the server, we
can partially simulate the interaction between a browser and a server using the telnet
application. You can establish a connection to a web server using telnet by connecting to
the port that the server islistening on, usually port 80 or in the case of Tomcat 8080.

|tel net |ocal host 8080
Y ou can do this from the command line, whether you're using a DOS shell or Unix. The

telnet session will aert you if it's unable to connect to a server with the hostname and
port.

45

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

If a connection is established, the telnet session will sit and wait for you to enter the
HTTP reguest information. The only information that you are required to enter is the first
line of the request, which tells the server what resource the client wants. Each line in the
request is a text line, separated by a newline character. The request header ends with a
blank line, so you actually have to press “enter” twice to let telnet know you are done
with the request. Figure 2-7 shows the HTTP response message returned from Tomcat
when arequest is made for the Redi r ect Ser vl et resource.

M
%MS-DOS Prompt - telnet

GET /zervlet/com.oreilly_struts.chapterZexamples _ Redirect8ervlet HTTP-1.8

HITP-1 .1 382 Moved Temporarily
Content—-Type: textshtml
: Sun, B3 Mar 2002 16:39:47 GMT
ion: http:/slocalhost:BABA/redirect. jsp?username =foodkpassword=har
: Apache Tomcat~s/4.@.2-bh1l (HITPr1.1 Connector’?
Connection: close

{html>*{head>{title>*Apache Tomcat-4.8.2-hl — Error report{ title>{STYLE>{*—H1i{fo
i : sans—serif . Arial.Tahomascolor = vhite;background-color : HBOBGL2;> B
: gans—serif . Arial.Tahomas;color : black;background—color : whi

» = yhite;;hackground-color : #OB86h2;> HR{color : HBBBEL2;:;> ——><{~ STYLE>

<shead><hody>{hi>Apache Tomcatr4.8.2-b1 — HITP Status 382 - Moved Temporarily<d~

hi><HR zize="1" noshade><{p>{(b>typelsh> Status reportl{ p>{p>{h> age<sh> <{u>Mou

ed Temporarilyl ul<{ p>{p><{b>description{/bh> {u>The requezted resource (Moved Ten|

porarilyd has moved temporarily to a new location.< ul{/p>{HR size="1" nozhade>{
shody><{ html>

Connection to host lost.

Press any key to continue...

Figure 2-7. Y ou can use a telnet session to inspect the HT TP response headers

In Figure 2-7, the first line of the request issues a GET and a path for aresource. The path
is the portion of the HTTP request that comes after the host name and includes the
preceding “/” character. The “HTTP/1.0" gring at the end of the GET reguest is the
HTTP version protocol.

HTTP version 1.1 added a number of optimizations over 1.0. However,
there are additional request headers that must be included, which would
make this example more complicated than necessary. Therefore, 1.0
was used to issue the request.

Everything after the first line is a response from the server. The entire HTML output at
the bottom comes from Tomcat. It informs anyone that is interested that the origina
request has performed a redirect and the client should request a new URL.

If you look at the Location response header, which is five lines down in Figure 2-7, you
can see that the server has informed the client what the URL should be for the new
request. Any URL parameters that were attached to the original request will still be
present in the new request. You can see this by looking at the value of the Location
response header in Figure 2.7. When the browser issues the new request, these parameters
will be sent.

46

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The technique of using telnet provides a simple way of interacting with a web server and
viewing what responses it sends back to the client.

Hopefully, you now have a better understanding of how a redirect works. It should aso
be clearer why any objects placed into the original request are not available to the
redirected resource. This will become very important later when we discuss the Struts
framework.

One interesting thing may not catch your attention here. Notice back in
example 2-1, the redirect string didn’t explicitly contain the hosthame
and port that the client needed to use for the new request. It’s the job of
the servlet container to trandate the relative URL to a fully quaified
URL for transmission back to the client. Later in the Chapter 20, you'll
see away of overriding this behavior. This may be necessary if you're
using a proxy server and masquerading the server on another host or
port.

Using a Forward

A forward differs from a redirect is severa distinct ways. For one, when you invoke a
forward for a request, the request is sent to another resource on the server, without
informing the client that a different resource is going to process the request. This process
occurs completely within the web container and the client is never the wiser. Unlike a
redi r ect, objects can be stored into the request and passed along for the next resource to
make use of. Figure 2-8 illustrates the steps that take place when arequest is forwarded.

1-HTTR Web Container
-
Request 2:Process
Request
Web Browser
- 4HTTP 3:Perform
Respanse Forward

Figure 2-8. During a forward, the request is sent to a secondary
resource on the server without notifying the client

Since aforward takes place completely on the server and there is no communication with
the client, the performance is better than a redirect. However, there are some differences
in how aforward deals with relative URLs. Example 2-3 should make this clearer.

Example 2-3. A Java serviet that performs a forward when it receives a request
package comoreilly.struts. chapter2exanpl es;

47

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

inport java.io.|CException;

i nport javax.servlet. Servl et Exception;

inport javax.servlet.http. HtpServlet;

inport javax.servlet.http. HtpServl et Request;

i nport javax.servlet.http. HtpServl et Response;

i nport javax. servl et. Request D spat cher;

/**
* Performa forward to the page "redirect.jsp"
*/

public class ForwardServl et extends HtpServlet {

public voi d doGet (HtpServl et Request request, HtpServl et Response response)
throws Servl et Exception, |CException{
forward(request, response);

}

public void doPost (HtpServl et Request request, HtpServl et Response response)
throws Servl et Exception, | CException{
forward(request, response);

}

/**

* Set a few URL paraneters and objects for the request to see what happens
* to themduring a redirect.

*/

protected void forward(HtpServl et Request req, HtpServl et Response resp)
throws Servl et Exception, | CException{
log("Arequest arrived for " + req.getServletPath());

/1 Put some objects into request scope
req.setAttribute("firstNane", "John");
reg.setAttribute("lastNane", "Doe");

String redirectStr = "/result.jsp?user name=f oo&passwor d=bar";

this.log("forwarding to " + redirectStr);
Request D spat cher di spat cher = req. get Request Di spat cher(redirectStr);
di spatcher.forward(req, resp);

}

}

When the serviet in example 2-3 receives either a GET or POST request, it calls the
forward() method and passes the HTTPServl et Request and
HTTPSer vl et Response objects to it. As with the redirect example, two St ri ng
objects are set into the request. However, in contrast with the redirect example, the
objects will be available after the forward. It next creates a redirect path that the request
will be passed to. A Request Di spat cher iscreated and the f or war d() method is
invoked on it. We'll use the same JSP page from example 2-2. In the browser, we enter a
URL like:

http://local host: 8080/ser vlet/com.oreilly.struts.chapter 2exampl es.Forwar dSer vl et

and the browser output should look similar to Figure 2-9.

48

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/3 Struts Redirect,/Forward Example - Microsoft Internet Explorer -0l x|
J File Edit ‘iew Fawotites Tools Help ﬁ
= . = . @ at aQ >
Barck. Faryard Skop Refresh Harmng Search
J Address Iﬁj http: flocalhost; 3050 serviet/com . oreilly struts, chapter 2examples, ForwardServlet j
=
Powered by
k‘_
TOMCAT

First Name: John
Last Mame: Doe

|® Done l_ l_ l_ Lacal intranet

Figure 2-9. The output page when the ForwardServiet is called

A

There are two interesting items that can be seen from Figure 2-9. The first is that the first
and last name fields have values. This is because the objects were placed into the request
before the forward occurred and the result.jsp was able to retrieve the values and use
them in the page.

The second interesting item is the URL in the address bar. Notice that the URL back in
Figure 2-6 showed the new URL that the client requested, whereas it didn’'t change in
Figure 2-9. This shows further that the client is not aware that a forward occurred. It
didn’t get a notice that the browser URL should change.

The forward method of the Request Di spat cher class can only be
called when output hasn't already been committed to the client. Writing
something to the response object and then calling forward will result in
anl || egal St at eExcept i on being thrown by the container.

Which onefor Struts?

It's difficult to decree whether you should use a redirect or a forward for Struts
applications, since we haven't discussed the framework yet. However, there are some key
points about using each approach. Both mechanisms have their pros and cons within
Struts and web applications in general. For many situations, a forwarded is recommended
over aredirect. Thisis chiefly due to the fact that when a forward is used, objects that are
stored in the request scope, are easily available to the presentation components. In fact,
using a forward is the default case for the Struts framework. Another advantage of a
forward is that it's must more efficient, since the client is not required to issue a new
request.

49

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There are however, some situations where a redirect is necessary or preferred over using
aforward. The problem revolves around the fact that when forwards are used, the URL’s
are not always keep consistent with the state of the client application. If the browser’'s
refresh button is pressed, unexpected results can occur. This may not make too much
sense right now, but it will be explored further in Chapter 5.

[Editors: | wanted to mention something in here about HttpSession management, but |
wasn't sure if it belonged in here or say in the design chapter. Any feedback on this
question would be helpful.]

50

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

3

Overview of the Struts Framework

[Note to al editors. After my initial reading of this chapter, | realized that | need to
emphasize the new 1.1 features a little more. | will make those additions during author
review

It's finally time to introduce the Struts framework. Familarity with the material from the
previous two chapters will allow you to absorb the information here must faster. This
chapter will provide an overview of the Struts framework and not attempt to uncover al
of the features or in any significant depth. It will emphasize instead, how all of the pieces
fit into the MV C and Model 2 architecture presented in Chapter 1.

The rest of the book will be spent pulling back the layers and uncovering the details of
the framework, expending on the more basic concepts and terminology introduced here.
It is important that you have a firm grasp of the fundamentals presented in this chapter.
Even if you are familiar with the basic concepts of the Struts framework, it's
recommended that you take the time and immerse yourself in this chapter first.

If you are one of the many developers trying to convince your manager to switch to the
Struts framework, this should be an excellent chapter for them to read. Since the
discussion will be kept at an overview level, this chapter will not be filled with too many
boring technical details. Hopefully, it will provide a valuable overview for both them and
you.

A Banking Account Example

This section introduces an online banking application that we'll be using to familiarize
you to the world of Struts. It represents the proverbial “Hello World” application that you

51

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

find in many first examples. A banking will be used to make the discussion more
interesting and a little more applicable to the types of applications that Struts can be used
for. The example presented here will not be complete and will be kept purposely trivial,
but will nonetheless help provide a high-level overview of the major components that are
present in all Struts applications and how those components fit together. A more
comprehensive and thorough example based on a shopping cart paradigm will be used
throughout the rest of the book, but the banking example will be a good one to start with.
Almost everyone should be familiar with the concept of online banking and we can avoid
spending too much time on explaining the business requirements.

Our online banking application will allow an end-consumer to login to the financial
institution’s web site and view account information and transfer funds from one account
to another, assuming the user has more than one account of course. The user must present
avalid set of credentials to enter the site, which for this example will consist of both an
Access Number and a Pin Number.

If the user leaves one or both fields blank, the application will display a formatted
message informing the user that both fields are required. If the user enters values for both
fields, but the authentication fails, the login screen will be re-displayed along with a
formatted error message informing the user that the login has failed. Figure 3-1 showsthe
online banking login screen after an invalid login attempt has been detected.

52

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

a Struts Online Banking - Account Login - Microsoft Internet Explorer provided by Dell

J File Edit Wiew Favaorites Tools Help |
= . 2 D al Q 7| >
Back Fariyard Stop Refresh Horne Search Fawvatites

J Address I@ http: }/localhost: 3080 bankingf actionflogin j ﬁGo

Online
Banking

+ Invalid Access Number and/or Pin Powered by

Access Number Struts
|3456-098

Pin Humber

e

Login |

@ Done l_ l_ l_ (=E Local intranet v

Figure 3-1. The Login screen for the online banking application

If the proper credentials are entered for an account, the user is taken to the account
information screen. This screen will show all of the accounts that the user has with the
financial institution, as well as the current balance for each account.

For this example, we are not going to provide a robust, full-fledge security service and
security realm. In fact, no time at all will be spent on developing a real security service.
This means that authentication and authorization will be hard-coded for simplicity.
Handling security in a web application can get very complicated and there’s no reason to
muddy the waters with it in this chapter. Chapter 14 will cover security in depth and it's
best to wait until then to discuss security. For the purposes of this chapter, a simple Java
interface will be used that contains a single | ogi n() method. This interface, or rather
an object that implements this interface, will be used to authenticate users. The
authentication interface is shown in Example 3-1.

Example 3-1. The | Authentication Interface used by the banking application
package comoreilly. struts. banki ng. servi ce;

inport comoreilly.struts. banki ng. vi ew User Vi ew,

53

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/**
* Provides nmethods that the banking security service shoul d i npl erent.
*/

public interface | Authentication {

/**

* The login method is called when a user wi shes to login to
* the online banking application.
* @ar am accessNunber The account access nunber.
* @aram pi nNunber The account private id nunber.
* @eturns A Val ueHol der object representing the user's personal data.
* @hrows | nvalidLogi nException if the credentials are invalid.
*/
public UserView login(String accessNunber, String pi nNunber)
throws I nvalidLogi nExcepti on;

Since Java interfaces can’'t be instantiated, we need to have a class that implements this
interface.

The comoreilly.struts. banking. service. SecurityService class is
shown in Example 3-2. It implements the | Aut hent i cat i on interface and provides
the application the ability to authenticate users. Of course, since we are not realy going
to authenticate against a security realm, the Secur i t ySer vi ce class alows anyone to
login to the application.

Example 3-2. The SecurityService used by the banking application for authentication

package comoreilly. struts. banki ng. servi ce;

inport comoreilly.struts. banking.vi ew UserVi ew,

/**
* Used by the exanpl e banking application to similate a security service.
*/

public class SecurityService inplements | Authentication {

*

/
The login nmethod is called when a user w shes to loginto

the online banking application.

@ar am accessNunber The account access nunber.

@ar am pi nNunber The account private id nunber.

@eturns A Val ueHol der object representing the user's personal data.
@hrows | nvalidLogi nException if the credentials are invalid.

E I T I R

~

public WserView | ogin(String accessNor, String pinNor)
throws InvalidLogi nException {

/1 This exanple is hard coded to only let in 123/456

i f(
(accessNor !'= null && accessNor. equal sl gnoreCase("123")) &%
(pinNor !'= null &&% pinNor.equal sl gnoreCase("456"))){

54

/1 Areal security service would check the |ogin against a security realm

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/* Dummy a UserView for this exanple.
* This data/object would typically cone fromthe business |ayer
* after proper authentication/authorization had been done.
*/

User Vi ew newM ew = new UserView "John", "Doe");

/1 Gve the user a primary key, which will be used later. ' course
/1 this would come fromthe data store in a real application.
newi ew. set 1 d("39017");

return newm ew,
}
el se {
/1 1f the user enters anything other than 123/456, throw this exception
t hrow new | nval i dLogi nExcepti on();
}
}

}

Remember, for this example application, we are only going to authorize the user if the
accessNumber entered is “123” and a pinNumber of “456". If the | ogi n() method is
successful, a comoreilly.struts. banking.view UserVi ew object is
created and returned. If an invalid set of credentias is passed to this method, a
comoreilly.struts. banking. service. | nvalidLogi nException is
thrown. The Logi nAct i on is comparing the values entered by the user against the
hard-coded values. Obviously, in a real application, you would check against some type
of asecurity realm, such as arelational database or an LDAP server.

Once the user has logged in successfully, they may perform one of three different actions:
View an account detail
Transfer funds from one account to another (if the user has two or more accounts)
Logout

Obvioudly, in areal online banking application, there would be much more functionality
included. However, for the purposes of the overview, this limited feature set will suffice.
Figure 3-2 shows the account information screen, which the user is taken to after a
successful login.

55

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Foriward .
@ http:/flocalhost: S0580,banking/ action/get accountinformation |—

Online
Banking

CHECKING $372.63
SAVINGS $1372.63
Total Assets $1,745.26

Figure 3-2. After the user successfully enters the banking application,
they are taken to the Account Information screen

The user can view detailed information about an account by clicking on the View Account
Detail link. Figure 3-3 shows the Account Detail Screen for one of the accounts listed in
Figure 3-2.

56

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

a Struts Online Banking - Account Detail - Microsoft Internet Explorer provided by Dell

J File Edit Wiew Favaorites Tools Help |
= . 2 D al Q 7| >
Back Fariyard Stop Refresh Horne Search Fawvatites

J Address I@ http: fflacalbost:8080/banking) action/getaccountdetail?id=389-341 j ﬁGO

Online
Banking

$1372.63

Qpening Balance (Sat Jun 032 21:50:08 EDT 2000%

Deposits

Withdrawls

Total Available Balance

@ Done l_ l_ l_ (=E Local intranet v

Figure 3-3. The Account Detail screen for the online banking
application

They may also transfer funds from one account to another by clicking on the Transfer
Funds link next to the account they wish to transfer funds from. Figures 3-3 shows the
Account Detail screen. Because the purpose of this chapter is to familiarize you with the
components of the Struts framework and not teach you the correct functionality of a web
banking application, the funds transfer functionality will not actually be implemented.
This will be a nice feature for you to implement later on as a practical exercise if you
desire.

Finally, the user may simply logout of the application altogether by clicking on the logout
function. The user will be logged out of the application and returned to the login screen.

L ooking at the Big Picture

Now that we've shown an example that we can use as the basis of this Chapter's
discussion, it’s time to start looking at how we can solve it using the Struts framework.
Although Chapter 1 discussed the MV C pattern in the order of Model-View-Controller, it
doesn’'t necessarily make sense to follow that same order as we explore the Struts

57

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

components. Infact, it's more logical to cover the components in the same order that the
Struts framework uses them to process a request. For that reason, the components that
make up the controller portion of the framework will be discussed first.

The Struts Component Packages

The Struts framework is made up of approximately 200 Java classes, divided into 15 Java
packages. Approximately is an appropriate term because the framework is continuously
growing and being shaped. Appendix A provides a complete listing of the Struts API for
your convenience. For this chapter, we'll only focus on the top-level packages. Figure 3-4
shows the top-level packages for the Struts framework and their dependencies.

1 1]
actions | } action upload
r [
] O
| | [I
validator |~ T | LT 1 i
1 [
| [
|
] o]
config K—————~- : :' """ taglib
< ________________

Figure 3-4. The Struts framework consists of 7 top-level packages

The framework components are not arranged by what role they play in the MV C pattern.
They are actually arranged a little haphazardly. This has to do more with how fast the
framework has evolved, rather than poor decisions made by the designers. The act i on
package for example, contains classes for the controller, some that are used by the view
domain, and even a few that probably would have been better off in the ut i | package.
With that being said, it’s not that hard to get use to where everything is and after awhile,
it even gets comfortable. In many cases, you normally only have to import the act i on
package anyway. A Few of these top-level packages also contain sub-packages. These
sub-packages will be presented as we move through the book.

Struts Controller Components

As you saw in Chapter 1, the controller component in a MV C application has severa
responsibilities. Those responsibilities include receiving input from a client, invoking a
business operation, and coordinating the view to return back to the client. Of course,

58

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

there are many other functions that the controller may perform, but these are a few of the
primary ones.

You aso learned that, with the JSP Model 2 architecture, on which Struts was fashioned
the controller was implemented by a Java servlet. This servlet becomes the centralized
point of control for the web application. The controller servlet maps user actions into
business operations and then helps to select the view to return to the client based on the
request and other state information. Figure 3-5 shows the figure from Chapter 1 as a
reminder.

—Web Conlainer ™
Servlet
User _ | | (Controller) ——
Action Y z
A
_ﬁ; % Java Beans
Y] (Model)
__ System <JSP>
Browser Response (View)

Figure 3-5.The Struts framework uses a Java serviet to handle the
controller responsibilities

In the Struts framework however, the controller responsibilities are implemented by
several different components, one of which is an instance of the
org. apache. struts. action. Acti onServl et class.

The Struts ActionServlet

The Acti onServl et extends the j avax. servl et. http. Htt pServl et class
and is responsible for packaging and routing HTTP traffic to the appropriate handler in
the framework. The Act i onSer vl et classis not abstract and therefore can be used as
a concrete controller by your applications. Prior to version 1.1 of the Struts framework,
the Act i onSer vl et was solely responsible for receiving the request and processing it
by cdling the appropriate handler. In verson 1.1, a new class called
org. apache. struts. acti on. Request Processor has been introduced to
process the request for the controller. The main reason for decoupling the request
processing from the Act i onSer vl et isto provide you with the flexibility to subclass
the Request Processor with your own version and modify how the request is
processed. For the banking application example, we are going to keep it simple and
utilize the default Acti onSer vl et and Request Processor classes provided by
the framework. Chapter 5 will describe in detail how these classes can be extended to
modify the default controller behavior. For brevity in this chapter, we will refer to these

59

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

two components simply as the “controller”. In Chapter 5, the role and responsibilities of
each component will be explained.

Like any other Java servlet, the Struts Acti onSer vl et must be configured in the
deployment descriptor for the web application. We won't go into detail about the
deployment descriptor here, that's saved for Chapter 4 “Configuring the Struts
Application”.

Once the controller receives a client request, it delegates the handling of the request to a
helper class. This helper knows how to execute the business operation that is associated
with the requested action. In the Struts framework, this helper class is a descendant of the

|s the Action part of the Controller or
Model?

Throughout the various articles, tutorials, and other resources that are available
on the Struts framework, developers have a differing opinion on whether the
Acti on class is part of the controller or the model. The argument for it being
part of the controller is that it isn't part of the “real” business logic. If Struts
were replaced with an alternative framework, chances are the Action class
would be replaced with something else. Therefore, it realy isn't part of the
model domain, but rather tightly coupled to the Struts controller. It doesn’t make
sense to put business logic into the Action, since other types of clients can’'t
easily reuseit.

Another reason to consider the Struts Act i on class part of the controller is that
it has access to the Acti onSer vl et and therefore all of the controller resources,
which the domain model shouldn’t know about. Hypothetically, the Action class
behavior could have been left in the servliet and the servlet would just call the
appropriate method on itself. If this were the case, there would be no doubt
about whether this was controller or model functionality.

With al of this said, the Acti on class in many cases, does invoke an operation
on the business model and many developers end up trying to insert too much of
their business logic into the action classes. Eventualy, the line becomes very
blurry. Perhaps this is why some developers consider it part of the model. This
book will take the approach that the Act i on classis part of the controller.

org. apache. struts. acti on. Acti onclass.

60

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Struts Action Classes

An org. apache. struts. action. Action class in the Struts framework is an
extension of the controller component. It acts as an Adaptor” between a user action and a
business operation. The Act i on class decouples the client request from the business
model. This decoupling alows for more than a one-to-one mapping between the user
request and an Act i on class. The Act i on class can perform other functions, such as
authorization, logging, and session validation, before invoking the business operation.

The Struts Action class contains several methods, but the most important is the
execut e() method. Hereisthe method signature:

publ i c ActionForward execut e(Acti onMappi ng nappi ng,
ActionFormform
H t pSer vl et Request request,
H t pSer vl et Response response)
throws | CException, ServletException;

The execut e() method is called on an instance of an Act i on class by the controller
when a request is received from a client. The controller will create an instance of the
Act i on classif one doesn’t already exist. The Struts framework will only create asingle
instance of each Action class in your application. Since there is only one instance for all
users, you must ensure that all of your Action classes operate properly in a multi-threaded
environment. Figure 3-6 illustrates how the execut e() method is invoked by the
primary controller components.

(-—Web Container
ActionServlet execitnd]
User and = Action
— ™| | RequestProcessor |« (Controller)
Action (Controller) ‘
System . l ;E:
Response &

Browser

(View)

.

Figure 3-6. The execute() method of the Action classis called by the
primary controller

Although theexecut e() method is not abstract, the default implementation just returns
null so you will need to create your own Act i on class implementations and override
this method.

" The Adaptor pattern is a structural design pattern mentioned in the book “ Design Patterns’ written
by Gamma, Helm, Johnson, and Vlissides, affectionately known as the GangOfFour (GoF).

61

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There is some debate over how best to implement Act i on classes using
Struts. Whether you create a different Acti on class for each and every
operation or whether you put several business operations in the same
Act i on classis subjective and has pros and cons on both sides.

In chapter 5, we'll discuss an action provided by the Struts framework
called org. apache. struts. acti ons. Di spat chActi on.
ThisAct i on givesyou the ability to create asingle Act i on classand
implement several similar operations like Create, Read, Update, and
Delete (CRUD) within it. This has the effect of creating a smaller
number of Action classes, but might make maintenance a little
harder. Chapter 21 will discuss some practices for designing your
Act i on classes.

As was mentioned previously, there are various ways to organize your Act i on classes.
For the banking application, we will create a unique Act i on class for each action that
the user can perform. Therefore, we will need to create the following actions:

Login
Logout
GetAccountlnformation

GetAccountDetail

Each one of the action classes that we'll create for the banking application will extend the
Struts Act i on class and override the execute method to carry out the specific operation.
In chapter 5, you'll learn that it's best to create an abstract base Act i on class for your
application that all of your other action classes extend.

This application specific base action would extend the Struts Act i on class and provide
you with added flexibility and extensibility that's hard to see the need for at the
beginning stages of development, but later you'll be glad that you did. For the banking
application however, things will be kept simple and the actions will direct descendants of
the Struts Act i on class.

Thecom oreilly. struts. banki ng. action. Logi nActi on classisshownin
Example 3-3. It extends the Struts Act i on class and is invoked by the controller when a
user attemptsto login to the banking application.

Example 3-3. The LoginAction used by the online banking application

package comoreilly. struts. banki ng. action;

inport javax.servlet.http. HtpServl et Request;
i nport javax.servlet.http. HtpServl et Response;
inmport javax.servlet.http. HtpSession;

62

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

i nport org.apache. struts. action. *;
inport comoreilly.struts. banking. | Constants;
inport comoreilly.struts. banking. service. | Authentication;
inport comoreilly.struts. banki ng. service. SecurityServi ce;
inmport comoreilly.struts. banki ng. service. | nval i dLogi nExcepti on;
inport comoreilly.struts. banking.vi ew UserVi ew,
import comoreilly.struts. banki ng. form Logi nForm
/**
* This Action is called by the Request Processor when a | ogin attenpt
* is made by the user. The ActionForm shoul d be an instance of
* a Logi nFormand contain the credential s needed by the SecurityService.
*/
public class LoginAction extends Action {
public ActionForward execute(ActionMappi ng nappi ng,
Act i onForm form
H t pSer vl et Request request,
H t pSer vl et Response response)
throws Exception {

User Vi ew userView = nul | ;

// Get the credentials fromthe Logi nForm
String accessNor = ((Logi nFornjforn).get AccessNunber ();
String pi nNor = ((Logi nForn)forn).getPi nNunber ();

/*

* In areal application, you would typically get a reference

* to a security service through something |ike JNDI or a factory.
*/

| Aut hentication service = new SecurityService();

// Attenpt to login
user Vi ew = service.logi n(accessNor, pinNor);

/1 Since an exception wasn't thrown, |ogin was successful

// Invalidate existing session if it exists
H t pSessi on sessi on = request . get Sessi on(fal se);
if(session !'=null) {
session.invalidate();
}

/] Oreate a new session for this user
session = request. get Session(true);

/] Store the WserViewinto the session and return
session.setAttribute(|Constants. USER VI ENKEY, userView);
return mappi ng. fi ndForward(| GConst ants. SUCCESS KEY);

}

}

The Logi nAct i on in Example 3-3 gets the credentials from the Act i onFor mthat
was passed in as an argument in the execut e() method.

63

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Act i onFor mclass will be discussed in the “The Struts View
Components” later in the Chapter.

A SecurityService is then created and the | ogi n() method and passed the
security credentials. If the login succeeds, anew Ht t pSessi on is created for the user
and the User Vi ewthat is returned from the | ogi n() method is put into the session. If
authentication fails, an | nval i dLogi nExcept i on will be thrown. Y ou should notice
that there' s no try/catch block for the | nval i dLogi nExcepti onintheexecut e()

method. Thisis because one of the new features of 1.1 is the built-in exception handling
capabilities of the framework. Even better is the fact that it's declarative. This is a great
new feature that removes much of the burden of exception handling from the developer.
With the declarative exception handling in Struts, you specify what exceptions can be
thrown from the actions and what you want the framework to do with them. Y ou specify
thisinformation in the configuration file like this:

<gl obal - excepti ons>
<exception
key="gl obal . error.invalidl ogi n"
pat h="/1ogi n.j sp"
scope="r equest "
type="comoreilly.struts. banki ng. service. | nval i dLogi nException"/>
</ gl obal - except i ons>

This fragment from the banking configuration file tells the framework that if an
I nval i dLogi nExcept i on isthrown by any action, it should forward to the login.jsp
resource and build an error message using the key “ global.error.invalidlogin” from the
resource bundle. You aso have the ability to override the default exception handling
behavior with whatever functionality that you need it to perform. Exception handling will
be covered at length in Chapter 10.

Mapping the Actions

At this point, you might be asking yourself, “ How does the cont r ol | er know which
Act i on instance to invoke when it receives arequest?’ The answer is by inspecting the
reguest information and utilizing a set of action mappings.

Action mappings are part of the Struts configuration information that is configured in a
special XML file. This configuration information is loaded into memory at startup and
made available to the framework at runtime. Each <act i on> element is represented in
memory by an instance of the or g. apache. struts. acti on. Acti onMappi ng
class. The Act i onMappi ng object contains a path attribute that is matched against a
portion of the URI of the incoming request. We'll talk more about action mappings and
the Struts configuration file in Chapter 4.

The following XML fragment illustrates the login action mapping from the configuration
file used by the banking application.

64

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<action
pat h="/1 ogi n"
type="comoreilly. struts. banki ng. acti on. Logi nActi on"
scope="request"
nane="1 ogi nFor n{
val i dat e="true"
i nput="/1ogin.jsp">
<f orward name="Success" pat h="/action/getaccountinformation" redirect="true"/>
<forward name="Failure" path="/1ogin.jsp" redirect="true"/>
</ action>

The login action mapping shown here maps the path “/login” to the Acti on class
comoreilly.struts. banki ng. Logi nActi on. Whenever the controller
receives a request where the path in the URI contains the string “/login”, the
execut e() method of the Logi nAct i on instance will be invoked.

The Struts framework also uses the mappings to identify the resource to forward the user
to once the action has completed. We'll talk more about configuring action mappings in
chapter 4.

Determining the Next View

WEe' ve talked about how the controller receives the request and how the action mappings
and request information are used to determine the correct action instance to invoke and
pass the request to. What hasn’t been discussed is how or what determines the view to
return back to the client.

If you looked closely at the execut e() method signatureinthe Act i on class from the
previous section, you might have noticed that the return type for the method is an
org. apache. struts. acti on. Acti onForward class. The Acti onForward
class represents a destination to which the controller may send control once an Action has
completed. Instead of specifying an actual JSP page in the code, you can declaratively
associate an action forward mapping with the JSP and then use that Act i onFor war d
throughout your application.

The action forwards are specified in the configuration file, similar to action mappings.
They can be defined for a specific action as this forward is for the [ogout action mapping.

<action
pat h="/1ogout "
type="comoreilly. struts. banki ng. acti on. Logout Act i on"
scope="request ">
<forward nane="Success" path="/login.jsp" redirect="true"/>
</ acti on>

The logout action declares a <f or war d> element that is named “Success’, which
forwards to a resource of “/login.jsp”. Notice in this case, a redirect attribute is set to
“true”. Instead of performing aforward using a Request Di spat cher, the request that
invokes the logout action mapping will be redirected instead.

65

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The action forward mappings can also be specified in a global section independent of any
specific action mapping. In the previous case, only the logout action mapping could
reference the action forward named “Success’. In the case of forwards declared in the
global forwards section, all action mappings can reference them. Here is an example
global forwards section from the banking configuration file:

<gl obal - f or war ds>
<forward name="Systentail ure" path="/systenerror.jsp" />
<forward nane="SessionTi meQut" pat h="/sessiontineout.jsp" />
</ gl obal - f or war ds>

The forwards defined in the global section are more general and don’t apply to a specific
action. Notice that every forward must have a name and path, but the redirect flag is
optional. If you don't specify a redirect attribute, its default value is false and thus
performs a forward. The forward behavior can be configured and we'll discuss it more in
the next chapter. The path attribute in an Act i onFor war d can aso specify another
Struts Action. You'll see an example of how to do thisin Chapter 5.

Now that you understand from a high-level how the Struts controller components operate,
it'stimeto look at next piece of the MV C puzzle, the Model.

Struts Model Components

There are several different ways to look at what constitutes a model for Struts. The lines
between business and presentation objects can get quite blurry when dealing with web
applications. One application’ s business objects are another’ s val ue objects.

It's important to keep the business objects separate from the presentation, so that the
application is not tightly coupled to one type of presentation. It’s very likely that the look
and feel of a web site will change over time. Studies show that the freshness of a web
site’s appearance helps to attract new customers and also keep existing customers coming
back. This may not be as true in the Business-to-Business (B2B) world, but it’s definitely
true for Business-to-Consumer (B2C) applications, which make up the majority of the
web applications used today.

66

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using Value Objects

Vaue objects are often used to provide a coarse-grained view of remote, find-
grained data. For example, if your application were using entity beans, instead
of making several remote calls to get individual state about the object, you
would make a single call that returned a local value object that contained all of
the data that you need. There is sometimes a summary and a detailed value
object for the remote object to help soften how much datais returned.

Although the value object represents the remote business object, it doesn’t
necessary contain the same business logic. In fact, it might not contain any
business logic at al. It really represents a “snapshot” of the remote object at a
particular instance in time, namely when the client requested the data. Vaue
objects can a so be used to update the business object as well. However, it gets a
little more complicated because of issues like optimistic locking and
synchronization, which we will discuss later.

Value objects are also referred to as “ View” objects because they are primarily
used by the presentation views as presentation JavaBeans. Because of
performance reasons, using value objects in a distributed application is almost a
necessity. You might be better off by using the same technique for smaller
applications as well. so that the database or business objects are not the ones
used within the presentation views. This helps to decouple the business objects
from the presentation, making maintenance and future enhancements easier.

The type of model components that you use might also depend on whether you're
building a traditional two-tier application or a multi-tiered distributed application.
Typically with a two-tiered application, the business objects are collocated with the web
application. Collocation means that objects are deployed within the same Java Virtual
Machine. This makes it easier to utilize these business objects to retrieve data for the
views. However, just because it's easier doesn't naturally make this a smart thing to do.
The business objects may be made up of very deep object graphs and contain references
to many other non-presentational resources. If you're not careful, the business objects can
quickly become coupled to a specific presentation, which could mean unintended side
effects each time the look and feel of the web site changes.

Another benefit of separating your business objects from the presentation objects is that
you can build course-grained objects that your JSP pages and custom tags can have an
easier time dealing with. All of your business logic should remain separate from the
presentation and the presentation views should simply retrieve data from the value
objects and display it.

67

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Logi nActi on class that was shown in Example 3-3 didn't contain the actua
authentication logic. Since the action class is part of the controller functionality, it
delegates the handling of the business logic to another service. In the case of the
Logi nActi on, it reliesona SecurityServi ce component. This component could
have been a remote reference to a session EJB or maybe just a wrapper around some
JDBC code that performed the authentication. In either case, the Logi nAct i on doesn’t
know or care how the service is implemented. This is very helpful because the
implementation could change drastically and as long as the | Aut henti cati on
interface remained unchanged and was implemented by the service, little code would
have to change. This approach aso helps with reuse. Imagine if you have another type of
client, like a Swing GUI, that needed to be authenticated. Since the logic is encapsul ated
into a separate component and not in the Act i on class, you are free to reuse this
security service.

You should strive to keep business logic out of the Act i on classes to protect against
change. In the case of the Logi nAct i on, thel ogi n() method returned an object of
classcom oreil ly. struts. banki ng. vi ew. User Vi ew Thisisagood example
of how to use value objects effectively. Example 3-4 shows the User Vi ew used in the
example application.

Example 3-4. The UserView value object, used by the presentation tier

package comoreilly. struts. banki ng. vi ew,

inport java.util. Set;
inport java.util.HashSet;
/**
* A value object for that waps all of the user's security infornation
*/
public class UserView inplenents java.io. Serializable {
private String id;
private String | ast Nane;
private String firstNane;

/1 A unique collection of pernmission String objects
private Set pernissions = new HashSet ();

/**

* Constructors

*/

public UserView(String first, String last) {
this(first, last, new HashSet());

}
public UserMiewString first, String last, Set userPernissions) {
super () ;
firstNane = first;
| ast Nane = | ast;
perm ssi ons = user Per m ssi ons;
}

68

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/**

* Returns true if the argunment is anong the col |l ection of
* pernmssions allowed for the user. Cherw se returns

* fal se.

*/

publ i c bool ean cont ai nsPer ni ssion(String pernissionNane) {
return perm ssions. contai ns(perm ssi onNane) ;

}

/**

* Retrieve the last name of the user

*/

public String getLast Nane() {
return | ast Nane;

}

/**

* Set the last nane of the user

*/

public void setlLast Name(String nane) {
| ast Nane = nane;

}

/**

* Retrieve the first nane of the user
*/

public String getFirstName() {
return firstNang;

}

/**

* Set the first nane of the user

*/

public void setFirstNane(String nane) {
firstNane = nane;

}
/**
* Retrieve the id of the user
*
/
public String getld() {
return id;
}
/**
* Set the id of the user
*
/
public void setld(String id) {
id=id;
}

}

The User Vi ew provides a course-grained view of a remote object. There might be five
security tables al joined by foreign keys that contain the data, but when the web tier gets
a User Vi ew, it has already been consolidated and made easy to access. In fact, one
implementation of this application could get the data from a relational database and
another from a Lightweight Directory Access Protocol (LDAP) instance. The nice thing
about encapsulating the authentication behind the security service is that the presentation
tier would not have to change when the security realm was switched. The Act i on isfree

69

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

to set the User Vi ew object into the request and then forward to a JSP, where the data
can be extracted and presented to the user.

The framework doesn’t have a great deal of support in the way of the model components.
This is better left for EJB, JDO, or some other type of persistence framework. Y ou can
also access a database directly from the framework, but you should till attempt to
separate that layer from all other parts of the framework. Y ou can do with by making use
of the appropriate design patterns to encapsulate the behavior.

The Struts View Components

The last of the MV C components to discuss are the Struts View components. Arguably,
it's the easiest to understand. The view components that are typically employed in a
Struts application are:

JavaServer Pages
Custom Tags

HTML

Java Resource Bundles
Struts Action Forms

Vaue Objects

Using the Struts ActionForm

Struts Act i onFor m objects are used in the framework to pass client input data back
and forth between the user and the business layer. The framework will automatically
collect the input from the request and pass this data onto an Act i on using a form bean,

which then can be passed along to the business layer. To keep the presentation layer
decoupled from the business layer, you should not pass the action form itself to the
business layer, but rather create the appropriate value objects using the data from the
form and pass these objects as argument to the business layer. The following steps
illustrate how the framework processes an Act i onFor mfor every request.

1. Check the mapping for the action and see if aform bean has been configured for it.
2. If so, use the name attribute to lookup the form bean configuration information.

3. Depending on the scope configured for the form bean for the action, check to see if
there’ s already an instance of the form bean at the appropriate scope.

4. If an Acti onFor minstance is present in the appropriate scope and it's the same
type as needed for this new request, reuse it.

70

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

5. Otherwise, create a new instance of the required form bean and store it into the
appropriate scope that is set by the scope attribute for the action mapping.

6. Thereset () methodiscaled onthe Act i onFor minstance.

7. lterate through the request parameters and for every parameter name that has a
corresponding set method name on the Act i onFor m populate it with the value for
that parameter.

8. Findly, if the validate attribute is set to true, then invoke the val i dat e() method
onthe Act i onFor minstance and return any errors.

For every HTML page where form data is posted, you should use an Act i onFor m The
action forms can be used for multiple pages if necessary to collect data over several

pages.

Example 3-5 showsthecom orei | | y. st ruts. banki ng. f orm Logi nFor mthat
is used with the banking application.

Example 3-5. The LoginForm used with the online banking application

package comoreilly. struts. banki ng.form

inport javax.servlet.http. HtpServl et Request;
i nport org.apache. struts. action.*;
i nport org.apache. struts. util.MessageResour ces;
/**
* This ActionFormis used by the online banking appliation to validate
* that the user has entered an accessNunber and a pi nNunber. |f one or
* both of the fields are enpty when validate is called by the
* ActionServlet, error nessages are created.
*/
public class Logi nForm ext ends ActionForm {
/1 The user's private id nunber
private String pi nNunber ;
/1l The user's access nunber
private String accessNunber;

/**
* Default Constructor
*/
public Logi nForn() {
super ();
reset F el ds();

}

/**

* Called by the framework to validate the user has entered the

* accessNunber and pi nNunber fi el ds.

*/

public ActionErrors validate(Acti onMappi ng mappi ng, HtpServl et Request req){
ActionErrors errors = new ActionErrors();

71

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/1 Get access to the nessage resources for this application
/1 There's not an easy way to access the resources froman Acti onForm

/1 This assumes our nessages are conming fromthe default MessageResources
MessageResour ces resources =
(MessageResources)req. get Attribute(Action. MESSACES KEY);

/1 Check and see if the access nunber is nissing
i f (accessNunber == null || accessNunber.length() == 0) {
String accessNunber Label = resources. get Message("I abel . accessnunber"”);

/1 Create an error message for the nissing accessNunber val ue
ActionError newError =
new ActionError("global.error.login. requiredfield", "");
errors. add(ActionErrors. GCBAL_ERRCR newkError);
}

/1 Check and see if the pin nunber is nissing
i f(pi nNunber == null || pinNunber.length() == 0) {
String pi nNunber Label = resources. get Message("I abel . pi nnunber");

/1l Oreate an error nessage for the m ssing pi ngNunber val ue
ActionError newError =

new ActionError("global.error.login. requiredfield", "Pin Nunber");
errors.add(ActionErrors. G CBAL_ERRCR newkError);

/1l Return the ActionErrors, in any.
return errors;

}

/**

* Called by the framework to reset the fields back to their default val ues.
*/

public voi d reset (ActionMappi ng mappi ng, HtpServl et Request request) {

/1l Qear out the access nunber and pin nunber fields
reset F el ds();

}

/**

* Reset the fields back to their defaults.
*/

protected void resetFields() {

this.accessNunber = "";
this. pi nNunber = "";

}
public void set AccessNunber (String nbr) {
t hi s. accessNunber = nbr;

}
public String get AccessNunber () {
return this.accessNunber;

}

public String getPi nNunber () {
return this. pi nNunber;

72

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

}

public void setPi nNunber (String nbr) {
t hi s. pi nNunber = nbr;

}

}

The Act i onFor mclass provided by the Struts framework implements several methods,
but by far the two most important arether eset () andval i dat e() methods.

public void reset (Acti onMappi ng nappi ng, HtpServl et Request request);
public ActionErrors validate(Acti onMappi ng nappi ng, HtpServl et Request

The default implementation for both methods in the Struts Act i onFor mclass doesn’t
perform any default logic. You'll need to override thee two methods in your
Act i onFor mclasses aswas done in the Logi nFor mclass shown in Example 3-5.

The controller callsthe r eset () method right before it populates the Act i onFor m
instance with values from the request. It gives the form bean a chance to reset their
properties back to the default state. Thisis very important as the form bean instance may
be shared across different requests and different users, so this can be a very important
method to implement. However, if you are using an Act i onFor m instance across
multiple pages, you might not want to implement the r eset () method so that the
values don’'t get reset until you' re completely done with the instance. Another approachis
to implement your own r eset Fi el ds() method and call this method from the action
class after a successful update to the businesstier.

Theval i dat e() method is called by the controller after the values from the request
have been inserted into the form bean. The form bean should perform any field
validatation that can be done and return any detected errors back to the controller.
Business logic validation should be performed in the business objects, not in the
Act i onForm The validation that occurs in the Acti onForm is more about
presentation input validation. Where to perform certain types of validation logic will be
covered in detail in chapters6 and 7.

The val i dat e() method in the Logi nFor min Example 3-5 checks to see if the
access number and/or pin number is missing and creates error messages if they are. If no
errors are generated, the controller then passes the Act i onFor mon with severa other
objectsto the execut e() method. The Act i on instance can then pull the information
out of the form bean, as with any other Java object.

You might have noticed that the execut e() method in the Acti on
class contains an argument that is always of the type Act i onFor m
You will need to cast this argument to the appropriate subclass to
retrieve the needed properties. If you need to see an example of this,
look back at Example 3-3.

Once you've created your Act i onFor mclasses, you need to inform Struts that they
exist and which action mappings use which action forms. This is done in the

73

request);

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

configuration file, as you might have guessed. The first step isto configure all of the form
bean classes. This is done in the <f or m beans> section of the configuration file. The
following fragment from the banking configuration informs Struts of the three
Act i onFor mbeans used by the banking application:

<f or m beans>
<f orm bean name="|ogi nForm type="comoreilly.struts.banking.form Logi nForm'/>
<f or m bean
name="account | nf or mat i onFor m
dynam c="true"
type="or g. apache. strut s. acti on. DynaAct i onFor i >
<f orm property name="accounts" type="java.util.ArrayList"/>
</ f or m bean>
<f or m bean
name="account Det ai | For n{
dynam c="true"
type="or g. apache. strut s. act i on. DynaAct i onFor ni >
<f orm property
nane="vi ew'
type="comoreilly.struts. banki ng. vi ew. Account Det ai | Vi ew'/ >
</ f or m bean>
</ f or m beans>

The name attribute for each form bean must be unique and the type attribute must define
afully qualified Java class that extends the Struts Act i onFor m class.

The next step is to use one of the form bean names from the <f or m beans> section for
one or more action mappings. The following fragment shows the mapping for the
Logi nAct i on, which you've already seen earlier in this chapter.

<action
pat h="/1 ogi n"
type="comoreilly. struts. banki ng. acti on. Logi nActi on"
scope="r equest "
nane="1 ogi nFor m
val i dat e="true"
i nput="/1ogin.jsp">
<forward name="Success" pat h="/action/getaccountinformati on" redirect="true"/>
<forward name="Failure" path="/1ogin.jsp" redirect="true"/>
</ action>

Notice how the name attribute of the login mapping matches one of the names in the
<f or m beans> section. The Struts developers should have probably called this
attribute <f or m beans>, but hindsight is always 20/20. The names of the form beans
are case sensitive.

One of the new features with 1.1 is shown in the previous <f or m beans> fragment.
With previous versions of the framework, you had to always extend the Act i onFor m
class with your own subclass. Even is the action form performed very generic behavior.
With Struts 1.1, a new type of action form has been added -called
org. apache. struts. acti on. DynaActi onFor m This class can be configured
for an action form for an action mapping and will automatically handle the data passed

74

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

from the HTML form to the action. It's able to be generic because internally it uses a
Map to store the values. This allows it to store any object. Chapter 7 will cover the
dynamic action form in more detail.

WEe'll wrap up this section and talk about something that can be a little confusing—
what’s the difference between a form bean that we' ve seen here and the value objects that
we mentioned earlier? This is a good question and one that is a little confusing for
developers new to Struts.

The view components can utilize both form beans and value objects to populate dynamic
content. In cases where you don’'t have a form bean configured for a mapping, value
objects can be used to build the views. In cases where a form bean is defined for the
mapping, there are several different ways to handle extracting the data from the bean.
One approach is to always wrap a form bean around the value object or objects returned
from the business tier and force the Struts view components to access the value object
data through the form bean methods. Likewise, when a client submits an HTML page,
Struts will invoke the form bean setter methods, which can shove the data back into the
view objects after the validation method has completed successfully. This provides a
single cohesive interface for the views to retrieve and submit the HTML data to. We'll
discuss the various pros and cons to this and other approachesin Chapter 7.

Using JavaServer Pagesfor Presentation

JavaServer Pages make up the majority of what has to be built for the Struts view
components. Combined with custom tag libraries and HTML, it becomes easy to provide
a set of views for an application. Although JavaServer Pages make up the majority of
what organizations and developers are using to display the dynamic content, it's not the
only technology.

There are other forms of presentation technologies that can be combined with the Struts
framework. One very popular one is the XML/XSLT combination. This alternate model
is being referred to as Model 2X, which is a combination of the controller serviet from
the Struts framework and XSLT and beans serialized from the value objects to render the
views. Many developers feel that JSP has the following problems:

Developers are free to embed application logic into the JSP pages. This can lead to
an application that is difficult to maintain.

JSP syntax is not currently XML compliant, which may cause the XML or HTML
that gets generated, not to be “well formed” .

Developers must learn the JSP syntax and how to program custom tags.

Developing a processing pipeline where each node in the pipeline may modify the
data or layout is not possible with JSP pages. This makes it difficult to separate
layout and style.

75

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

A recompile of the JSP page is necessary for each change made to the page.

Some developers may see these issues as not any big deal. Many sites have been built
using the JavaServer Pages technology. However for those that want alternatives, they are
available. In Chapter 16 of the book, we'll ook at alternate presentation technologies can
used by the framework.

Custom Tag Libraries

The Struts framework provides five core tag libraries that can be used by your
applications. Each one has a different purpose and can be used individually or along side
the others. Y ou may also create your own custom tags and can even extend the Struts tags
if you need them to perform extra functionality. The custom tag libraries that are included
with the framework are:

HTML Tag Library
Bean Tag Library
Logic Tag Library
Template Tag Library
Nested Tag Library

Unless you are planning on using templates as part of your application, the Template Tag
library might not be necessary, but the others are invaluable to making your application
easy to develop and maintain.

To use the libraries in your application, you need to first register them with the web
application. To do this, you should add the following lines to the deployment descriptor
for each web application that you wish to use Struts for.

<web- app>

<tagli b>
<taglib-uri> WEB-INF/struts-htni.tld</taglib-uri>
<taglib-location> WEB-1N-/struts-htni.tld</taglib-I|ocation>
</taglib>
<tagli b>
<taglib-uri> WEB-|1 NF/ struts-bean.tld</taglib-uri>
<tagl i b-1ocation> WEB-| NF/ struts-bean. tld</taglib-I|ocation>
</taglib>
<tagli b>
<taglib-uri> WEB-|INF/struts-logic.tld</taglib-uri>
<taglib-location> WEB-1 NF/struts-logic.tld</taglib-Iocation>
</taglib>
<taglib>
<taglib-uri> WEB-IN-/struts-tenplate.tld</taglib-uri>
<taglib-location> WEB-|1 NF/struts-tenplate.tld</taglib-Iocation>

76

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

</taglib>
<taglib>
<taglib-uri> WEB-| NF/ struts-nested.tld</taglib-uri>
<taglib-1ocation> WEB-|1 N/ struts-nested.tld</taglib-Iocation>
</taglib>
</ web- app>

More information on installing and configuring Struts for your application can be found
in Appendix B.

The next step isto create your JSP pages and include the following lines.

<y@taglib uri="/WEB-I NF/ struts-bean.tld" prefix="bean" %
<v@taglib uri="/WEB-INF/struts-htm.tld" prefix="htm" %
<v@taglib uri="/VEB-IN-/struts-logic.tld" prefix="logic" %
<Y@taglib uri="/WEB-|INF/ struts-nested.tld" prefix="nested" %

Once this is done and the Struts JAR file is in the web application's CLASSPATH, you
are then able to use the custom tags in your JSP pages. Example 3-6 illustrates the usage
of several of the Struts custom tags inside the login.jsp page for the banking application.

Example 3-6. The login.jsp used by the online banking application
<Y@page | anguage="j ava" content Type="text/htm" %

<Y@taglib uri="/WEB-|I N/ struts-bean.tld" prefix="bean" %
<y@taglib uri="/WEB-INF/ struts-htm.tld" prefix="htm" %
<y@taglib uri="/WEB-INF/struts-logic.tld" prefix="Iogic" %

<htm : htn >
<head>

<htni : base/ >

<titl e><bean: nessage key="title.login"/></title>

<link rel ="styl esheet" href="styl esheets/|ogin_style_ie.css" type="text/css">
</ head>

<body topnargi n="0" | eftmargi n="5" margi nhei ght ="0" nargi nwi dt h="0"
bgcol or =" #6699FF" >

<htm : formaction="Iogi n" focus="accessNunber">

<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0" wi dt h="100% bgcol or ="#6699FF" >
<tr><td>
<htn :ing srcKey="image. | ogo" w dth="79" hei ght="46"
al t Key="i nage. | ogo. al t" border="0"/>
</td></tr>
</tabl e>

<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0" w dt h="100% >
<tr><td bgcol or="#000000" >
<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0" wi dt h="1" hei ght ="2"></t abl e>
</td></tr>
</t abl e>

<tabl e border="0" cel | paddi ng="0" cel | spaci ng="0" wi dth="1" hei ght="1">

77

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<tr><td></td></tr>
</tabl e>

<t abl e>
<tr><td></td></tr>
</t abl e>

<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0" wi dt h="590">
<tr><td width="15" hei ght="31"></td><td wi dth="12"></td></tr>
<tr>
<td w dth="15"></td>
<td wi dth="575" bgcol or ="#FFFFFF" col span="2">
<tabl e cel |l paddi ng="0" cel |l spaci ng="0" border="0" wi dth="575" hei ght="3">
<tr><td></td></tr>
</t abl e>
</td>
</[tr>
</t abl e>

<tabl e border="0" cel | paddi ng="0" cel | spaci ng="0" w dt h="590" bgcol or="#ffffff">
<tr>
<td w dth="15" bgcol or ="#6699FF" ></ t d>
<td width="15"></td><td w dt h="379"></t d>
<td width="15"></td>
<td width="15"></td>
<td width="15"></td>
</tr>
<tr>
<td bgcol or ="#6699FF" wi dt h="15"></td>
<td></td>
<td valign="top">
<t abl e border="0" cel | paddi ng="0" cel | spaci ng="0">
<tr class="fieldl abel ">
<t d><bean: message key="I| abel . accessnunber"/></td>
</tr class="fieldl abel ">
<tr>
<td><htm :text property="accessNunber" size="9" naxl ength="9"/></td>
<td class="error"><htm:errors/></td>
</tr>
<tr class="fieldl abel "><td hei ght="10"></td></tr>
<tr class="fiel dl abel "><t d><bean: nessage key="1|abel . pi nnunber"/></td></tr>
<tr class="fieldl abel ">
<t d><ht m : password property="pi nNunber" si ze="4" naxl engt h="4"/></td>
</tr>
<tr><td hei ght="10"></td></tr>
<tr><td><htn:submt styled ass="fieldl abel" val ue="Login"/></td></tr>
<tr><td></td></tr>
</tabl e>
</td>
<td wi dth="151" valign="top">
<htm :inmg srcKey="inage. strutspower” altKey="inmage.strutspower.alt"/>
</td>
</tr>
</tabl e>
<y@ncl ude file="include/footer.jsp"%

78

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<pbr>

</htm:fornp
</ body>
</htm:htm>

One of the first things that should strike you about the login page in Example 3-6 is just
how little Java code there is. In fact, there’s none. Instead you see mostly HTML
formatting tags and several uses of Struts tag libraries. This is exactly the purpose of
using custom tag libraries. Because there’'s no Java programming necessary, HTML
designers can work freely with the page layout without being burdened by the
programming aspects of the page. The other nice feature is that many JSP pages can use
the same tag. For more information on these and other tag libraries, see Chapter 8,
“ Custom Tag Libraries’.

As you can probably imagine by looking at the JSP page in Example 3-6, maintenance
and customization becomes very easy to support. In fact, one of the hardest
customizations that developers face is to quickly and effortlessly customize a web
application for multiple languages. There are several built-in features of the Java
language that help support Internationalization aspects, and Struts builds on top of that
support to provide more.

M essage Resour ce Bundles

The Java library includes a set of classes to support reading message resources from
either a Java class or a properties filee. The core class in this set is the
java. util.ResourceBundl e. The Struts framework provides a similar set of
classes, based around the or g. apache. struts. util. MessageResour ces class
that provides similar functionality, but provides for a little more flexibility that the
framework requires.

The standard Java support for Internationalization has grown with the past severa
releases and the Struts framework could probably use what's included with 1.2 and
newer, but since Struts was created before 1.2, they had to build in their own support for
severa key pieces.

With a Struts application, you must provide a Java message bundle for each language that
you wish to support. The name of class or properties file must adhere to the guidelines
listed in the JavaDocs for the j ava. uti| . Resour ceBundl e class. Example 3-7
shows the properties file used by the example banking application.

Example 3-7. The message resources used by the online banking application

Label s

| abel . accessnunber =Access Nunber
| abel . pi nnunber =Pi n Nunber

| abel . account s=Account s

| abel . bal ance=Bal ance

79

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| abel . tot al asset s=Total Assets

| abel . account =Account

| abel . bal ance=Avai | abl e Bal ance

| abel . descri pti on=Descri ption

| abel . anount =Anount

| abel . deposi t s=Deposi ts

| abel . wi t hdrawl s=Wt hdr awl s

| abel . openi ngbal ance=Cpeni ng Bal ance

Links

Ii nk. cust oner agr eenent =Qust oner Agr eenent
I'i nk. privacy=Privacy

l'i nk.security=Security

I'i nk. vi enaccount det ai | =Vi ew Account Detai |

Page Titles

title. login=Struts Online Banking - Account Login
title.accountinfo=Struts Online Banking - Account |nformation
title. accountdetail =Struts Online Banking - Account Detail

Button Label s
| abel . but t on. | ogi n=Logi n

Error nessages
gl obal . error.invalidl ogi n=<I'i > nval i d Access Nunber and/or PFin

gl obal . error. | ogin.requiredfiel d=<i>The {0} is required for |ogin
| mages

i mage. | ogo=i mages/ | ogo. gi f

i mage. | ogo. al t=Struts nline Banking

i mage. | ogout =i mages/ | ogout . gi f
i mage. | ogout . al t =Logout

i mage. st rut spower =i nages/ strut s- power. gi f
i mage. strut spower. al t =Powered By Struts

i mage. transf er =i mages/transfer. gif
i mage. transfer.al t="Transfer Funds"

i mage. cl ear =i mages/ cl ear. gi f

If you look back at the login JSP page in Example 3-6, you can see how the messages
from the bundle are used. For example, the following fragment from the login JSP page
illustrates the key titlelogin from Example 3-6 being used and inserted between the
HTML <title> tagsin the page.

| <titl e><bean: nessage key="title.login"/></title>

The Struts or g. apache. struts.taglib. bean. MessageTag is one of several
custom tags included in the framework that can take advantage of the resource bundle.
JSP pages can retrieve values from the resource bundle using the MessageTag based on
akey as shown in the login JSP page from Example 3-6. The key in the message tag must

80

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

correspond to a value on the left side of the equal sign in the bundle. Case is very
important and the value must match exactly.

A message resource bundle is used for reasons other than just for
localization. It can also save time during application maintenance. For
example, if you use the same text messages or labels throughout
various parts of your web site or application, when one or more of these
values need to change, you only need to make the change in a single
location. Even if you don’t have requirements for Internationalization,
you should still utilize resource bundles.

With Struts 1.1, you now have the ability to define multiple MessageResour ces for
an application. This alows you isolate certain types of resources, into separate bundles.
For example, you might want to store the image resources for an application into one
bundle and the rest of the resources into another. How you organize your application’s
resources is up to you, but you now have the flexibility to separate them based on some
criteria. Some applications choose to separate along components lines. For example, all
resources relating to the catalog go into one bundle, order and shopping cart resources
into another, and so on. Chapter 21 “Struts Design Strategies’ will discuss these and
other strategies for organizing you resource bundles.

Multiple Application Support

Prior to version 1.1, each Struts application was limited to having a single configuration
file. The single instance of the file, which is normally caled struts-config.xml, was
specified in the web application deployment descriptor. It was the sole provider of the
configuration information for the Struts application. The fact that there was only a single
place to put configuration information made it very difficult for larger projects because it
often became a bottleneck and caused contentions to use and modify thisfile.

With the creation of 1.1, this problem has been alleviated with the advent of multi-
application support. You can now define multiple configuration files and allow
developers to work better in parallel. Multiple applications or multiple sub-apps as some
are calling this new feature will be discussed further in Chapters 4, 5, 6, and 7.

Summary

As you learned in this chapter, the Struts framework provides an implementation for the
MVC sructure, tailored for a web application. The Struts ActionServl et,
Request Processor, and Acti on classes provide the Controller components; the
Act i on communicates with your application's model components, and finaly the

81

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

combination of the Act i onFor m value objects, JSP pages, and tag libraries make up
the View.

This chapter focused on Struts at a very high level and left out many of the details that
make the framework even better. Struts, like other valuable software frameworks, allow
you to focus on developing the business logic, instead of spending expensive
development time on low-level infrastructure functionality like request dispatching and
field-level validation. Hopefully this peripheral discussion has enticed you to read on and
explore the framework details in the next several chapters.

82

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

A

Configuring the Struts Application

The Struts framework uses two separate, but somewhat related types of configuration
files, which must be properly configured before an application will function properly.
Due to the popularity and flexibility of the self-describing nature of XML, both of these
configuration files are based on XML.

The web application deployment descriptor web.xml is described fully in the Java Servlet
specification. This configuration file is necessary for all web applications, not just those
built with the Struts framework. There is however, Struts specific deployment
information that must be configured within it when building web applications using
Struts.

Although the Struts framework supports the 2.2 Servlet Specification,
many servlet containers aready have support for version 2.3. This book
will include coverage of the 2.3 Specification aswell as 2.2.

The second configuration file that this chapter will examine is the Struts configuration
file, commonly named struts-config.xml. As you'll see however, the name can be just
about anything that you want it to. The Struts configuration file makes it possible for you
to declaratively configure many of your application’s settings. Y ou can think of the Struts
configuration file as the rules for the web application.

Introduction to the Storefront Application

Throughout the rest of the book, we are going to be using a shopping cart type
application for all of the examples. The application will be built up along the way as we

83

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

go through the Chapters and at the end of the book, we should have a fairly complete

application that uses every 1.1 feature. Figure 4-1 shows the main page of the storefront
application.

/] Virtual Shopping with Struts - Microsoft Internet Explorer provided by Dell

=101 x|
J File Edit Wiew Favorites Tools Help ﬁ
« 03 Q@ al Q 3|) i
Back Fatiwatd Stop Refresh Harne Search Favatikes Madia
J Address I@ http:{flocalhost:8050/storefront findex. jsp j @GU
-
Virtual Shopping Would you like to sign in?
with Strots ltems in shopping cart: 0 @[
Current Total: $0.00

_ INFORMATION CENTER - ABOUT U5 STORE LOCATOR

ORDER STATUS MY ACCOUNT

FREE SHIPPING e

ORDER NOW AND SAVE iy

4 &r Wabwre Cowers
Limited time offer &; Caboraars
Receive free shipping on purchases of any huffler. Water Prps

Can Shatts

Exhumst Pipes

5.5 ’
[it ’ ,
(PR I — L w
Walue Cover Water Pump Carborator Exhaust Pipes Cam Shaft Tire
Price: $89.99 Price: $68.99 Price: $189.99 | Price: $179.99 | Price: $14899 | Price: $89.99
Wew! A really Wew release.
nice valve cover

Copyright & 2000-2002 OReily Strots.
To be uzed with the OReilly Struts book only.

4| | _’I_I
[€ y

l_ l_ l_ (28 Local intranst
Figure 4-1. The main page of the example storefront application

This storefront application will demonstrate an e-commerce automotive parts supplier,
but you can substitute any items that you want, as long as you have your own images and
data to put into the application. In the end, you'll have the storefront application as a

complete WAR file that can be deployed into any compliant web container and used as
an example for many different purposes.

84

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

What isa Web Application?

Applications built using the Struts framework are at their core, web applications. A web
application is a collection of individual components that once bound together, form a
complete application that can be installed and executed by a web container. The
components are tied together due to the fact that they reside in the same web context and
in many cases, may refer to one another, directly or indirectly. For example, if you have
an application that is rooted on a web server under a directory called storefront, then all
of the files that are in this directory and below are considered part of the storefront web
application. Any reference to a resource with the storefront prefix is routed to this web
application. So, if auser typed in the following URL:

http: //www.somehost.com/stor efront/index.jsp
then the JSP page would be served from the root of the storefront web application.

A web application can be installed and executed in multiple web containers concurrently.
For that matter, multiple instances of the same web application can be installed in the
same web container. However, because of the manner in which URL’s are matched to the
correct web application, each web application must have a unique name within the web
container. This means that you can’'t have two web applications running in the same web
container using the same name.

Let's take a closer look at exactly what type of components can reside in a web
application.

Elements of a Web Application

Obvioudly, not al web applications are created equal. They will not have the same
functional and non-functional requirements across organizations, departments, or even
the same vertical markets. Therefore, not all web applications will contain the same types
of resources. In general however, web applications can consist of one or more of the
following types of components:

Servlets

JSP Pages

Standard JavaBeans and Utility Classes

HTML Documents

Multimedia Files (Images, Audio and Video Files, CAD Drawings, etc...)
Client side Applets, Stylesheets, and JavaScript Files

Text Documents

85

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Metainformation that ties all of the above components together

TheWeb Application Directory Structure

A web application typically consists of a structured hierarchy of directories. Although the
servlet specification does not require servlet containers to support a hierarchical structure,
it is highly recommended and mosgt, if not al do. The root directory of the hierarchy
serves as the document root for the web application. As you saw earlier, requests that are
made using the web application’s root context path will be served out of the directory for
that web application.

Within the web application directory hierarchy, a special directory exists named WEB-
INF. This directory should contain meta-information relating to the web application. This
directory is a private directory and therefore no resource within this directory should be
able to be requested by a client. However the resources in the WEB-INF directory are
visible to servlets and Java classes that reside within the web application.

Because the servlet specification requires that the WEB-INF directory
not be visible to a web client, this is an ideal location to put files and
other resources that you do not wish to expose directly to a client.
Resources like XML configuration files and other private application
resources should be placed within this directory for the web
application. As you'll see later in this chapter, the Struts configuration
fileisaso normally located in this directory.

The WEB-INF directory is where the deployment descriptor for the web application
should be placed. The deployment descriptor is covered in detail in the next section.

There are two specia directories underneath WEB-INF that get special treatment by the
web container. The WEB-INF/classes directory is used to place servlets and utility classes
that can be used by the web application. If the Java classes are scoped within a Java
package, the classes directory must contain the proper sub-directories within it that match
the package name.

For example, suppose you had a Java servlet named
comoreilly.struts. framework. StorefrontControl | er for a web application hamed
storefront. The Storefront Controller.class file would have to be placed in the
framework directory as shown in Figure 4-2.

86

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

EH:I starefront
= WEB-INF
= dlasses
- com
EH:I oreilly
El{:l skruts

----- ‘2 Framewark

Figure 4-2. Java classes that are in a package must be in the proper
directories

The other special sub-directory underneath WEB-INF is the lib directory. The WEB-
INF/lib directory is an area where JAR files can be deployed and will be picked up by the
class loader for the web application.

Based on the 2.3 Servlet Specification, the web application class loader
must load classes from the WEB-INF/classes directory first, and then
from library JARS located in the WEB-INF/lib directory.

Other than these specia requirements, the directory structure for a web application is left
up to the developer. 1t should be based on the functional and non-functional needs of the
application. With smaller web applications, files and resources may be combined into a
few common directories. For larger web applications however, each component may
need to have a separate directory underneath the web application root directory. This will
allow for easier development and maintenance. Figure 4-3 shows a directory structure for
an example storefront web application.

storefronk
-1 cakalog
{1 comman
{:I cuskamer
l:l cuskamersuppork
{:I images
{7 include
{1 multimedia
{7 order
{2 shoppingcart
{1 stylesheets
=1+ WEE-INF

Figure 4-3. The directory structure for the storefront web application

87

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Here are a few things to consider when choosing the directories for your Struts
applications are:

Keep any of the components that are optional separated from the required ones so
that partial deployment will be easier to support

Take into account the size of the development team and the necessity to prevent file
and checkout contention

Be careful to consider file and resource dependencies and to make sure to take
advantage of reuse and include files

Other than these simple guidelines, the directory structure for your web application is
entirely up to you.

Web Application Archive Files

Web applications can be packaged into a format called Web ARchive format (WAR)
using the Java ARchive tool (JAR). The extension of the file must be .war. For example,
if we archived the storefront application, it would be named storefront.war. When aweb
application is packaged as a WAR file, it must maintain it's relative directory as
illustrated in Figure 4.3.

Web containers are capable of loading the WAR file and un-packing the resources back
into the necessary structure that can be loaded by the container. The WAR file format is
most useful when you need to distribute an application. It can also be part of a much
larger distributable file called Enterprise ARchive format (EAR). Chapter 20 will discuss
the best practices of packaging your application using these different formats.

Web Application Deployment Descriptor

The web application deployment descriptor helps to convey configuration information
between application developers, deployers, and assemblers. Web containers also utilize
the descriptor to help configure and load the web applications when the container is
started.

The following types of deployment information are required to be supported by all serviet
containers that are compliant to the Servlet 2.3 Specification.

Initialization Parameters
Session Configuration
Servlet Declaration

Servlet Mappings

88

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Application Lifecycle Listener Classes
Filter Definitions and Mappings
MIME Type Mappings

Welcome File List

Error Pages

Security configuration information is not required unless the servlet container is part of a
J2EE implementation. The following elements are not required unless the servlet
container isusing JSP pages or is part of a J2EE application server.

Tag libraries Mappings
JNDI References

Much of the functionality described in this list was added during the
2.3 version of the servlet specification. If you are using a 2.2 compliant
container, it will not be available to you. However, the Struts
framework currently supports 2.2 aswell as 2.3.

Web Application Deployment Descriptor DTD

The format for both the web deployment descriptor and the Struts configuration file is
based on a Document Type Definition (DTD), which defines the legal building blocks that
may be used in the XML files. From the DTD point of view, all XML documents,
including the web application deployment descriptor and the Struts configuration files,
are made up of the following elements:

Elements
Tags
Attributes
Entities
PCDATA
CDATA

89

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Using these components, DTDs help specify what is a vaid and well-formed” XML
document. The DTD for the 2.3 web application deployment descriptor can be
downloaded from the following URL :

http: //java.sun.com/dtd/index.html

The following DTD declaration shows the top-level elements that make up the
deployment descriptor for aweb application.
<! ELEMENT web-app (icon?, display-nanme?, description?,
di stributabl e?, context-parant, filter*, filter-nmapping*,
listener*, servlet*, servlet-napping*, session-config?, nime-
mappi ng*, wel cone-file-list?, error-page*, taglib*, resource-
env-ref*, resource-ref*, security-constraint*, |ogin-config?,
security-role*, env-entry*, ejb-ref*, ejb-local-ref*)
>

The web-app element is the root of the deployment descriptor for a web application. The
other elements inside the parenthesis are child elements, which must be placed inside the
root web-app element within the XML file. The symbols next to the child elements
indicate the allowed multiplicity of the child elements within the XML file. Table 4-1
provides a brief explanation of the symbols.

Table 4-1. Multiplicity symbols of child elements within a DTD

Symboal Meaning

No Symbol When there is no symbol next to the child
element, this indicates that the child must
occur once and only once within the parent
element.

+ The + sign declares that the child element
can occur one or more times within the
parent element.

* The* sign declares that the child element
can occur zero or more times within the
parent element. This symbol is used quite
often.

" A well-formed XML document is one that is properly formatted with all begin tags closing with
end tags, attributes are quoted properly, the entities are declared, and so on. When an XML
document is well-formed, it is easier for a computer program to parse it and possibly deliver it over
anetwork. A valid XML document is one declares a DTD and adheres to the rules set forth in that
DTD.

90

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

? The ? sign declares that the child element
occurs zero or one time within the parent
element. In other words, the child element
is optional. This symbol is used quite often.

Configuring the web.xml filefor Struts

Although the web.xml file is used for configuring any generic web application, there are a
few Struts specific configuration options that you must configure within this file when
using the Struts framework. The next section describes the necessary steps that you'll
need to perform to ensure that your Struts applications are properly configured.

M apping the Struts ActionServiet

The first and maybe most important step that you need to perform is to configure the
Struts Act i onSer vl et that will receive all incoming requests for the application.

You only need to configure a single ActionServiet, regardless of the
number of sub-applications that are being used. Some developers
choose to setup multiple controller servlets to handle different
functional areas of the application. Since servlets are multi-threaded,
you don’'t gain any real performance or scalability value by using
multiple ActionServl et mappings. Because Struts now supports
multiple sub-applications, arguably there might not be any reason to
have more than a single controller servlet for an application.

There are two steps in configuring the Struts controller servlet in the web.xml file. The
first step is to use the serviet element to configure the servlet instance that can later be
mapped in the serviet-mapping element. The child elements that are used in the serviet
element are shown here.

<! ELEMENT servl et (icon?, servlet-nane, display-name?, description?,

(servlet-class|jsp-file), init-parant, |oad-on-startup?, run-

as?, security-role-ref*)>

The child elements that we are most interested in for configuring Struts are serviet-name,
servlet-class, and the init-param. The following partial web.xml file illustrates how these
three elements are used to declare the Struts controller servlet instance.

<web- app>
<servl et>
<ser vl et - name>st or ef r ont </ ser vl et - nanme>
<servl et-class>omoreilly.struts.franework. StorefrontControl |l er</servl et-cl ass>
<init-paranm
<par am name>conf i g</ par am name>

91

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<par am val ue>/ WEB- | NF/ st r ut s- conf i g. xni </ par am val ue>
</init-paran»
</ servl et>
</ web- app>

The serviet-name element specifies the canonical name that the servlet is referenced as
throughout the rest of the deployment descriptor. Each servlet instance element must
have a unique name within the web application. When configuring the serviet-class
element for a Struts application, this element must specify a fully qualified Java class that
extendsthe or g. apache. struts. acti on. Acti onServl et class.

Because the Struts Acti onSer vl et class is not abstract, you are free to
utilize that class and avoid having to create a subclass of the
ActionServlet for your application. With earlier versions of the
Struts, it was probably more important to extend the Acti onSer vl et
class with one of your own because most of the processing occurred
there and sub classing allowed you to override that functionality with
that of your own. With version 1.1 however, most of the processing
functionality has been moved to the Struts Request Processor class,
which you can configure declaratively asyou'll see later in this chapter,
and there is very little reason to create your own Act i onSer vl et class,
although you are still free to do so.

The other step that needs to be performed in order to configure the Struts controller
servlet in the deployment descriptor is to configure the servlet mapping. This is done
using the serviet-mapping element. The following partial deployment descriptor
illustrates how combining the serviet-mapping element with the serviet element shown
previously completes the Act i onSer vl et configuration.

<web- app>
<servl et>
<ser vl et - nane>st or ef r ont </ ser vl et - name>
<servl et-class>omoreilly.struts.franework. StorefrontControl |l er</servl et-cl ass>

</ servl et >
etc...

<servl et - mappi ng>
<servl et - nane>st or ef r ont </ ser vl et - name>
<url-pattern>*.do</url-pattern>
</ servl et - mappi ng>
</ web- app>

Notice that the name given to the Storefront Control | er servlet within the serviet
element is used in the serviet-mapping element. This tells the container that all requests
that have an extension of .do should be serviced by the St oref ront Cont rol | er serviet
instance.

92

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Mapping Request to Servlets

Thisis probably a good time to digress for a moment and discuss exactly how URLSs that
a user types in are mapped to the correct web application and servlet. When a web
application is installed into a container, the container is responsible for assigning a
Servl et Cont ext to it. There is a single instance of a Ser vl et Cont ext object for each
web application deployed in a container.

If the container is distributable and utilizes more than one JVM, the
web application may have a separate Servl et Cont ext instance for
each JVM.

The Ser vl et Cont ext provides an external view of the web application for the serviet. A
servlet can use the Servl et Cont ext object to gain access to external resources, log
events, and store attributes and objects that other servlet instances in the same context can
access. It's essentially an application-scope shared resource.

Since a servlet is associated with a specific web application, al regquests that begin with a
specific request path, otherwise known as the context path, are routed to the web
application and get associated with its Servl et Cont ext instance. Servlets that are
associated with the default application have an empty string “” as the context path.

When a web container receives a client request, it must determine the correct web
application to forward it to. It determines this by matching the request URL with the
longest context path that matches an installed web application. For example, if there are
two web applications instaled in a container and one is rooted at
http: //mww.somehost.convstorefront and the other at
http://mww.somehost.convstorfront_demo, if a client request arrived at the server with a
request URL of http://www.somehost.convstorefront_demo/login.do, then the server
would match it to the web application that had the closest match, which in this case
would be the storefront demo application.

Once the container determines the correct web application; it must next determine which
servlet from the web application should process the request. The web container uses the
request URL, minus the context path to determine the path that will be used to map the
request to the correct servlet. The web container uses the following guidelines. The first
successful match is used with no further matches attempted.

1. The web container will attempt to locate an exact match of the request path to the
path of a servlet.

2. The container will recursively try to match the longest path prefix. The servlet that
contains longest match, if any, is selected.

3. If the URL path contains an extension, for example .do, the servlet container will try
to match a servlet that handles requests for that extension. The extension is defined
asthe part of the last segment after thelast . character.

93

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

4. If none of the previous rules produced a match, the container will attempt to use a
default servlet if one is configured. Otherwise, the request will return an error
response.

The web container must use-case sensitive string comparisons when checking for a
match.

The concept of extension mappings was mentioned in step 3 of the matching guidelines.
There is another type of mapping that can be used, path mapping. A serviet-mapping that
utilizes a path mapping allows a URL that doesn’t contain an extension to match to the
servlet. Using the storefront serviet mapping from before, the following partial web.xml
illustrates how path mapping can be configured.
<web- app>
<servl et - mappi ng>
<ser vl et - name>st or ef r ont </ ser vl et - nanme>
<url-pattern>/action/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Using the path mapping here, all requests that get mapped to this web application and
contain the string /action in the request URL, will be serviced by the storefront servlet.
Thisisregardless of what isin place of the “*” character.

Specifying M ultiple Sub-Applications

As was briefly discussed in Chapter 3, the Struts 1.1 release has added the ability to
define multiple Struts configuration files, one for each sub-application that is supported.
In previous versions of the framework, you would configure a single Struts configuration
file in the web application deployment descriptor by specifying a relative path to the
configuration file using the config initialization parameter. With version 1.1 and the
concept of multiple sub-applications, you are now able to create multiple Struts
configuration files and specify them in the web.xml using multiple config initialization
parameters and the sub-application prefix. The next section discusses the initialization
parameters that can be configured for the servlet.

Declaring the I nitialization Parameters

Initialization parameters are used to make configuration options available to a servlet.
This alows the developer to declaratively affect the runtime environment of the servlet.
Initialization parameters are configured within the serviet element using <init -
par an> elements as shown in the following web.xml fragment.
<web- app>
<servl et>
<servl et - nane>st or ef r ont </ ser vl et - nane>

<servl et-class>comoreilly.struts.franmework. StorefrontControl |l er</servlet-class>
<ini t - parane

94

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<par am nanme>conf i g</ par am nanme>
<par am val ue>/ WEB- | NF/ st r ut s- conf i g. xni </ par am val ue>
</init-parany
<init-param
<par am nane>host </ par am nane>
<par am val ue>| ocal host </ par am val ue>
</init-parany
<init-param
<par am name>por t </ par am name>
<par am val ue>7001</ par am val ue>
</init-parany
</ servl et >
etc...

<ser vl et - mappi ng>
<servl et - name>st or ef r ont </ ser vl et - nanme>
<url-pattern>*. do</url-pattern>
</ servl et - mappi ng>
</ web- app>

You can specify any parameters that you need within the init-param element as long as
it's a name/value pair. For example, the previous web deployment descriptor included
initialization parameters for a host and port. If you were using EJB, this might be a way
to include the server connection information. Zero or more init-param elements are
allowed.

There are specific initialization parameters that can be specified for the Struts serviet. In
earlier versions of Struts, many of the configuration options that are now in the Struts
configuration file, resided as init-param elements in the web deployment descriptor.
Although applications that were originally built and tested with version 1.0 will till
continue to work using the version 1.1, you may want to move some of the initialization
parameters that you currently have specified in the web deployment descriptor, to the
proper location in the Struts configuration file. Although the framework includes
functionality that will allow the previous initialization parameters to work in the
web.xml, we will be covering the 1.1 parameters here.

Table 4.1 identifiesthe initialization parameters that can be specified for Struts 1.1

Table 4-1. Initialization Parameters for web.xml using Sruts 1.1

Name Purpose/Default Value

config A context-relative path to the default struts configuration file. The
default value is /WEB-INF/struts-config.xml, which serves as the
default application.

95

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

config/subl

debug

detail

validating

For additional sub-applications, you can specify them by using the
value config/ and the prefix of the sub-application. In this example, the
init-param name would be config/subl and the value might be WEB-
INF/struts-subl1-config.xml. Thistells the controller to load the sub-
application subl from using the additional Struts configuration file.

Y ou can declare as many sub-applications as you need.

The debugging detail level for this servlet, which controls how much
information islogged. This parameter is optional and defaultsto O if
not specified, which is the lowest amount of logging information
possible.

The debugging detail level for the Digester, which logs information as
it parses the configuration files. This parameter is optional and defaults
to 0 if not specified, which is the lowest amount of logging information
possible.

A boolean value indicating whether to use a validating XML parser to
process the configuration file, which is strongly recommended. This
ensures that problems with the configuration files will be detected and
reported immediately. This parameter is optional and defaultsto true if
not specified.

If you are supporting a 1.0 Struts application using the 1.1 release, the
web.xml may still contain many of the configuration parameters that are
now defined in the Struts configuration file. The parameters apply only
to the default application and will eventually be removed in future
releases.

Configuringthe Tag Libraries

The Struts framework provides several JSP tag libraries that must be configured in the
web application deployment descriptor if you choose to use them. You inform the
container of these tag libraries by declaring one or more taglib elements within the web
deployment descriptor. The following partial web.xml file illustrates how the tag libraries
are configured.

<web- app>
<tagli b>

<tagli b>

<taglib-uri> WEB-|1 NF/ struts-bean.tld</taglib-uri>
<taglib-1ocation> WEB-| NF/ strut s-bean. t1d</taglib-1ocation>
</taglib>

<tagli b>
<taglib-uri> WEB-|1NF/struts-logic.tld</taglib-uri>

<taglib-uri> WEB-INF/struts-htni.tld</taglib-uri>
<taglib-location> WEB-1N-/struts-htni.tld</taglib-I|ocation>
</taglib>

96

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<taglib-location> WEB-1 NF/struts-logic.tld</taglib-Iocation>
</taglib>

<tagli b>
<taglib-uri> WEB-IN-/struts-tenplate.tld</taglib-uri>
<taglib-location> WEB-|1 N-/struts-tenplate.tld</taglib-Iocation>
</taglib>
</ web- app>

The taglib element has two sub-elements, the taglib-uri and taglib-location. The taglib-
uri element specifies a URI identifying a tab library that is used by the web application.
The value may either be a relative or an absolute URI. It must be a valid URI, but here
it's used as a unique identifier for the tag library. The taglib-location element specifies
the location (as aresource) of the tag library descriptor file.

The Struts tag libraries are not the only ones that may be declared in the web application
deployment descriptor. If you create any of your own custom tag libraries, you should
create taglib elements for them here as well. Although the JSP specification allows for
both explicit and implicit mappings, it's best to list the tag libraries that are used within a
web application in the web.xml file so that all parties to the development of the web
application know exactly what the dependencies are.

Setting up the Welcome File List

The welcome-file-list element allows you to configure default resources that should be
used when a valid, but partial URI is entered for a web application. You can specify
multiple welcome files and they will be used in the order that they are configured.

To understand this better, suppose we configured the welcome-file-list element for the
storefront application asin example 4-1.

Example 4-1. A partial web.xml file showing the welcome files for the Storefront
application
<wel conme-file-list>

<wel corre-fi | e>i ndex. j sp</ wel cone-fil e>
</wel corme-file-list>

The welcome-file-list shown in example 4-1 indicates that a request to the server for
http://mww.somehost.com/storefront, which is the root of the storefront application,
should resolve to http://www.somehost.convstorefront/index.jsp. This is very beneficia
because most containers would by default look for index.html or index.htm instead. Y ou
can specify multiple welcome-file elements within the welcome-file-list. This might be
helpful if for example, you deployed your application on various types of containers and
the first welcome-file resource was not found on the server. The container would continue
to try to match the welcome files up to the request URI until it found one on the server
and served that resource to the client. The order of the welcome file entries in the
deployment descriptor is used for the matching process.

97

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

There should be no trailing or leading “/" characters in the welcome-file element. If there
are no welcome files configured for the web application or the URI entered by a client,
the web container may handle the request in a manner that is appropriate. This may mean
returning a 404 response or a directory listing. It's a good idea to configure a welcome
filefor at least the root web application.

Using a Struts Action in the welcome-file-list

Because the web containers don't use the servlet mappings for resources in the welcome-
file-list, you can't directly setup a <wel cone-fi | e> element to use a Struts action.
However, there is an aternate way that will allow you to meet the same goal.

Y ou need to create a global forward in the Struts configuration file for the action that you
would like to invoke:
<gl obal - f or war ds>

<forward name="wel cone" pat h="vi ewsi gni n. do"/>
</ gl obal - f or war ds>

Then create a JSP page called wel cone. j sp (the name can actually be anything that
you want) and use the Struts forward tag to forward to the global forward when the page
is accessed.

<y@taglib uri="/WEB-I N~/ struts-logic.tld" prefix="1ogic" %
<l ogi c: forward name="wel cone"/>

Those are the only two lines that you need to put in the wel come. j sp file. You will
then need to add a<wel cone-fi | e> element for thewel cone. | sp page:
<wel cone-file-list>
<wel core-fi | e>wel cone. j sp</wel cone-file>

<wel corre-fi | e>i ndex. j sp</ wel cone-fil e>
</wel corme-file-list>

When the container uses the wel cone. j sp resource, it will automatically forward to
the global forward named “ welcome’. Thisin turn invokesthe vi ewsi gni n. do action
and achieves the desired result.

Configuring Error Handling in web.xml

Although the Struts framework provides a suitable error handling mechanism, there are
times that problems can dlip through the exception-handling crack, and users are shown a
servlet or JSP exception. To absolutely prevent this from happening, you should use the
error-page element available to the web application deployment descriptor. Example 4-2
shows a partial web.xml file that utilizes the error-page element to prevent users from
seeing a404 or a 500 error.

Example 4-2. Using the error-page element will keep users from seeing unhelpful error
pages
<web- app>

98

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<error - page>
<error-code>404</ err or - code>
<l ocat i on>/ conmon/ 404. j sp</| ocat i on>
</ error - page>

<error- page>
<err or - code>500</ err or - code>
<l ocat i on>/ conmon/ 500. j sp</| ocat i on>
</ error-page>
</ web- app>

When an error status code is set in the response, the container will consult the list of error
page declarations for the web application. If there is a match found, the container will
return the resource indicated by the location element. The value of the location element
must begin with a “/* character. It must also refer to a resource within the web
application. If you need to refer to a resource outside of the web application, you can use
the HTML Refresh META TAG. In the location element, refer to a static HTML
document that only contains the following line:

| <neta http-equi v="Refresh" content="0; URL=http: //wwv sonehost . coni 404. j sp" >

When the error occurs, the Refresh META tag will reload immediately, but it will use the
aternate URL provided. This strategy is also a good way to allow uses to refer to
resources with a static extension such as .htm, but then reload to a dynamic page such as
a JSP page.

Servlet can also generate exceptions, which you are able to declare an error page for.
Instead of specifying the error-code element, you can specify a fully qualified Java class
using the exception-type element. Since servlets can throw the following exceptions
during processing:

Runt i meExcepti onorError
Ser vl et Except i on or subclasses
| OExcept i on or subclasses

The Java exception class declared in the exception-type entry must be one of these types
of throwable’s.

Example 4-3 illustrates how you would substitute the exception-type element for the
error-code.

Example 4-3. Using the exception-type element instead of the error-code

<web- app>
<error - page>
<exception-type>j avax. servl et. Servl et Except i on</ excepti on-type>
<l ocat i on>/ conmon/ system error.jsp</location>
</ error-page>
</ web- app>

99

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

For the majority of this chapter, you have been shown partial deployment descriptors.
This was done mainly for space, but also so that we could ease our way into the various
supported elements. It's finally time to include a complete example of a web deployment
descriptor. Example 4-4 shows the web deployment descriptor for the storefront
application.

Example 4-4. A complete web.xml configured for Sruts 1.1
<?xm version="1.0" encodi ng="UTF- 8" ?>

<! DOCTYPE web- app
PUBLIC "-//Sun Mcrosystens, Inc.//DID Wb Application 2.3//EN'
"http://java. sun. coni dt d/ web-app_2_3. dtd">

<web- app>
<servl et >
<servl et - name>st or ef r ont </ ser vl et - name>
<servl et - cl ass>or g. apache. struts. acti on. Acti onServl et </ servl et - cl ass>
<init-param
<par am name>conf i g</ par am name>
<par am val ue>/ WEB- | NF/ st r ut s- conf i g. xni </ par am val ue>
</init-parany
<init-param
<par am nane>debug</ par am nane>
<par am val ue>3</ par am val ue>
</init-parany
<ini t - parane
<par am nanme>det ai | </ par am nanme>
<par am val ue>3</ par am val ue>
</init-paran»
<ini t - parane
<par am name>val i dat i ng</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-paran»
<l oad- on- st art up>1</ | oad- on- st ar t up>
</servl et>

<servl et - mappi ng>
<servl et - nane>st or ef r ont </ ser vl et - name>
<url-pattern>/action/*</url-pattern>

</ servl et - mappi ng>

<wel cone-file-list>
<wel cone-fil e>i ndex. j sp</wel cone-fil e>
</ wel core-file-list>

<error - page>

<error - code>404</ err or - code>

<l ocat i on>/ conmon/ 404. j sp</ | ocat i on>
</ error - page>
<error - page>

<error - code>500</ err or - code>

<l ocat i on>/ conmon/ 500. j sp</| ocat i on>
</ error-page>

100

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<tagli b>

<taglib-uri> WEB-I N/ struts-htni.tld</taglib-uri>
<taglib-location> WEB-|1 N/ struts-htm .tld</taglib-1ocation>
</taglib>

<tagli b>

<taglib-uri> WEB-I N+ struts-bean.tld</taglib-uri>

<tagl i b-location> WEB-| NF/ strut s-bean. t| d</taglib-|ocati on>
</taglib>

<tagli b>

<taglib-uri> WEB-IN-/struts-logic.tld</taglib-uri>
<taglib-location> WEB-1 NF/struts-logic.tld</taglib-Iocation>
</taglib>

<tagli b>
<taglib-uri> WEB-I N/ struts-tenplate.tld</taglib-uri>
<taglib-location> WEB-1 N/ struts-tenpl ate.tld</taglib-1ocation>
</taglib>
</ web- app>

The Struts Configuration File

The Struts framework depends on one or more configuration files to be able to load and
create the necessary application specific components at startup. The configuration files
allow the behavior of the framework components to be specified declaratively, rather
than have the information and behavior hard-coded. This gives devel opers the flexibility
to provide their own extensions, which can be discovered dynamically by the framework.

The configuration file is based on the XML format and can be validated against the Struts
DTD struts-config_1_1.dtd. Although there are some similarities between the 1.0 and 1.1
versions of the framework with respect to the configuration file, there are as many
differences. Fortunately, the designers of the framework have made backwards
compatibility a goal of the 1.1 release, therefore your 1.0.X applications should continue
to function properly with the new version.

Configuring M ultiple Sub-Applications still

Even though the overview that was given in Chapter 3 mentioned multiple sub-
applications briefly, we haven't fully introduced the new feature that the Struts 1.1
release has added to the framework. With sub-applications, you have the ability to define
multiple Struts configuration files, one for each sub-application that is supported. Each
sub-application can provide its own configuration information, including message
resources and be completely independent from other sub-applications.

101

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Sub-applications or multi-applications as some developers are referring to them, allow a
single Struts application to be split into separate projects, thus better supporting parallel
development.

Although the functionality for multiple sub-applications exists in the framework, you are
not required to implement more than one, the default application. We'll discuss sub-
applications later in the chapter and much more in Chapters 5, 6, and 7. For now, we are
going to concentrate on configuring the default application and then we'll show just how
easy it isto add multiple sub-applications.

The org.apache.struts.config Package

The org. apache. struts.config package was added to verson 1.1. The
framework uses these JavaBeans to hold onto in memory, the configuration information it
reads from the Struts configuration files. Figure 4-4 shows the main classes from the
config package.

MessageResourcesConfig ApplicationConfig | FluginGonfig
P — 0
a.r 1
ControllerConfig| 0.° m
0.
0.*
DataSourceConfig
0+
ActionConfig
FormBeanConfig
0.
0.*

1

o.*

FormPropertyConfig ConfigRuleSet ExceptionConfig

0.

Figure 4-4. The class diagram of the org.apache.struts.config package

Each JavaBean class in the confi g package holds onto information from a specific
section of the configuration file. After the configuration file has been validated and
parsed, the Struts framework uses instances of these JavaBeans, to represent in-memory
versions of the information that has been declared in configuration file. The JavaBean
classes act as runtime holders of the configuration information and are used by the
framework components when they need to determine what has been configured.

102

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The or g. apache. struts. confi g. Confi gRul eSet class shown in Figure 4-1
has a dightly different, but related job. It contains the set of Digester rules that are
required to parse a Struts configuration file. Its job is to construct instances of the
configuration JavaBeans when the application is started.

The Appl i cati onConfi g class

A special introduction should be made for the
org. apache. struts. config. ApplicationConfig class, as it plays a very
important role in the framework. As Figure 4-4 indicates, it is central to the entire
confi g package and holds onto the configuration information that describes an entire
Struts application. If multiple sub-applications are being used, then there is one
ApplicationConfig object for each sub-application. The
Appl i cati onConfi guration class will surface throughout our discussion the
framework.

The Struts Configuration DTD

Asthe web application's DTD is used to validate the web.xml file, the Struts DTD is used
to validate the Struts configuration file. The following Struts DTD declaration indicates
that the struts-config element is the root element for the XML file and that it has seven
child elements.

< ELEMENT struts-config (data-sources?, formbeans?, global-exceptions?, global-
forwards?, action-mappi ngs?, controller?, nessage-resources*, plug-in*)>

The data-sources Element

The data-sources element allows you to setup a rudimentary data source that you can
utilize from within the Struts framework. A data source acts as a factory for database
connections. It provides a single point of control for handing out connections and many
data source implementations utilize a connection pooling mechanism to improve
performance and scalability.

There are many vendors that provide their own implementation of a data source object.
The Java language provides the javax.sgl.DataSource interface that all
implementations must implement. Most popular application servers provide built-in data
source components and you will also find that all of the major database vendors provide a
data source implementation as well.

The data-sources element can contain zero or more data-sour ce el ements as shown here.

| <! ELEMENT dat a- sources (dat a- source*)>

The data-source element allows for multiple set-property elements to be specified, which
allows you to configure properties that are specific to your data source implementation.

| <! ELEMENT dat a- sour ce (set-property*)>

103

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Throughout the discussion of the Struts configuration elements in the
rest of this chapter, you will notice a child element called set-property
in many of the major elements of the configuration file. The set-
property element specifies a name and value of an additional
JavaBeans configuration property whose setter method will be called
on the object that represents the surrounding element. Using this
element is especially useful for passing additional property information
to an extended implementation class. The set-property element is never
required and you will only use it if you need to pass properties to a
configuration class that does already an attribute predefined.

The set-property element defines 3 attributes, of which only two are
required. The property attribute is the name of the JavaBeans property
whose setter method will be called. The value attribute is a string
representing the value that will be passed to the setter method after
proper conversion. The next section on the data-sources element will
provide an example of using the set-property element. The same format
will be replicated wherever the set-property element is declared.

The attributes for the data-source element are illustrated in table 4-2.

Table 4-2. The attributes for the data-source element

Name Description

id Not currently used.

className The implementation class of the configuration bean that will hold the
data source information. If specified, it must be a descendant of
org. apache. struts. confi g. Dat aSour ceConf i g, which is the default
class when no value is specified. This attribute is optional .

key The servlet context attribute under which this data source will be
stored. The attribute is optional and the default valueis
Act i on. DATA SOURCE_KEY.

type A fully qualified Java class name of the data source implementation

class. The class represented by this value must implement

j avax. sql . Dat aSour ce and be configurable from JavaBeans
properties. This attribute is optional and the default value is
org. apache. struts. util. Generi cDat aSour ce.

Example 4-5 illustrates how you can configure a data source within the Struts

configuration file.

Example 4-5. Specifying a data source that can be used within the Sruts framework
<dat a- sour ces>

<dat a- sour

ce>

<set-property property="autoConmt" val ue="true"/>

104

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<set-property property="description" val ue="M/Sgl Data Source"/>
<set-property property="driverd ass" val ue="com caucho. j dbc. nysql .Driver"/>
<set-property property="maxCount" val ue="10"/>
<set-property property="mnCount" val ue="2"/>
<set-property property="user" val ue="admn"/>
<set-property property="password" val ue="admn"/>
<set-property property="url"
val ue="j dbc: nysql - caucho: / /| ocal host : 3306/ storefront"/>
</ dat a- sour ce>
</ dat a- sour ces>

Example 4-5 illustrates a data-source element configured to connect to a MySql database
using a JDBC driver from Caucho Technology, which are the developers of the Resin™
servlet container. The Struts framework provides a default data source implementation
with the class or g. apache. struts. uti | . Generi cDat aSour ce. As Table 4-2 shows, you
can use your own implementation or one from a third-party by providing the class name
in the type attribute. In Example 4-5, the default data source implementation from Struts
is being used.

Y ou can specify multiple data sources within the configuration file and assign each one a
unique key and access a particular data source in the framework by its key. This gives
you the ability to access multiple databases if your requirements call for it.

Although the data source functionality provided by the framework does work, your
application may require a more robust data source implementation. There are several
other popular data source implementations that you can use. Table 4-3 lists several of the
more popular aternative implementations that other Struts developers have had success
using.

Table 4-3. Alternative data source implementations

Name Vendor URL

Poolman Open Source http: //sour cefor ge.net/projects/poolman/
Expresso Jcorporate http: //mww.j cor por ate.com/

JDBC Pool Open Source http: //mwww.bitmechani c.comvpr ojects/jdbepool

The creator of the Poolman open source libraries is not supporting it
anymore. Although it’s still available on SourceForge and works quite
well, it has not been updated for quite some time. Of course, since it's
open source, you can make necessary fixes and changesif you need to.

Theform-beans Element

The form-beans element allows you to configure multiple Act i onFor mclasses that are
used by the views. Within the form-beans section, you can configure zero or more form-
bean child elements. Each form-bean element also has several child elements of itself.

105

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<! ELEMENT formbean (icon?, display-nane?, description?, set-property*, form
pr operty*) >

Each form-bean element also has five attributes that you can specify. Two of the
attributes are required and the rest are optional. Table 4-4 lists the attributes.

Table 4-4. The attributes of the form-bean element

Name Description
id Not currently used.
className If you don’t want to use the standard configuration bean

org. apache. struts. confi g. For mBeanConf i g, you can specify your
own class here. It must extend the FormBeanConfig class. This
attribute is optional and the framework will use an instance of the

For nBeanConf i g classif not specified.

dynamic If the class identified by the type attribute is an instance of
org. apache. struts. acti on. DynaAct i onFor m then this value should
be set to true. Otherwise this value is false. This attribute is optional
and the default value isfalse.

name A unique identifier for this bean, which is used to reference it
throughout the framework. This value is required and must be unique
within a sub-application.

type The fully qualified name of a Java classthat extends the Struts
Act i onFor mclass. If thisvalue is specified as
org. apache. struts. acti on. DynaAct i onFor m then Struts will
dynamically generate an instance of the DynaAct i onFor m which also
extends Act i onFor m This attribute is required.

As you learned from Chapter 3, a form bean is a JavaBean class that extends the
org. apache. struts. acti on. Acti onFor mclass. Example 4-6 shows how the form-
beans element can be configured in the configuration file.

Example 4-6. A partial struts-config.xml file showing the form-beans section

<struts-config>
<f or m beans>
<f or m bean
nane="1 ogi nFor ni
dynam c="true”
type="org. apache. struts. acti on. DynaAct i onFor ni >
<form property name="usernane" type="java.lang.String"/>
<form property name="password" type="java.lang. String"/>
</ f or m bean>

<f or m bean

nane="shoppi ngCart For n{

type="comoreilly. struts. order. Shoppi ngCart Forni/>
</ f or m beans>

106

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| </ struts-config>

One of the <f or m bean> elements in Example 4-6 uses a new feature to Struts 1.1
called dynamic action forms. The purpose of dynamic action forms was discussed in
Chapter 3.

You can pass one or more dynamic properties to an instance of the
org. apache. struts. acti on. DynaAct i onForm class using the <f orm property>
element. It's only supported when the type attribute of the surrounding <form-bean>
element is “org.apache.struts.action.DynaActionForm”, or descendant.

Each form-bean element also has five attributes that you can specify. Two of the
attributes are required and the rest are optional. Table 4-4 lists the attributes.

Table 4-4. The attributes of the form-bean element

Name Description

className If you don’t want to use the standard configuration bean
org. apache. struts. confi g. For nPropertyConfi g, you
can specify your own class here. This attribute is not required.

initial A string representation of the initial value for this property. If not
specified, primitives will be initialized to zero and objects to null. This
attribute is not required.

name The JavaBeans property name of the property being described by this
element. This attributeis required.

type The fully qualified Java class name of the implementation class of this
bean property, optionally followed by "[]" to indicate that this property
isindexed. This attribute is required.

Thisis avery nice feature in 1.1 because it saves you development time from having to
create a bunch of Acti onFor mclasses that just pass data from the HTML pages to the
backend. The DynaAct i onFor mextends the Act i onFor mclass so you will need to perform
an explicit cast on the Act i onFor mobject within the execute method of your Action class
to retrieve the properties.

Since the DynaAct i onFor minstance is created dynamically, the val i dat e() method
doesn’'t provide any default validation behavior, so you may have to perform the
validation in your Acti onclass. Ther eset () method will till be called and the values
will be reset back to the default state. Action forms will be discussed further in Chapter
7.

107

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The global-exceptions Element

The global-exceptions section allows you to configure exception handlers declaratively at
the application level. The global-exceptions element can contain zero or more exception
elements.

| <! ELEMENT gl obal - exceptions (exception*)>

As you'll see later in this chapter when we talk about the action mappings,
<except i on> elements can also be specified at the action level. If an <excepti on>
element is configured for the same type of exception both at a global level and at an
action level, the action level will take precedence. If no exception element mapping is
found at the action or application level, the framework will then look for exception
mappings defined for the exception’s parent class. Eventually, if a handler is not found, a
Ser vl et Except i on or | CExcept i on will be thrown, depending on the type of the original
exception. Chapter 10 deals with both declarative and programmatic exception handling
in detail. This section will illustrate how to configure declarative exception handling for
your applications.

The <excepti on> element describes a mapping between a Java exception that may
occur during processing of a requet and an instance of
org. apache. struts. acti on. Except i onHand| er that is responsible for dealing with the
thrown exception. The declaration of the <except i on> element illustrates that it also
has several child elements.

| <! ELEMENT exception (icon? display-nane? description? set-property*)>

Probably more important than the child elements are the attributes that can be specified in
the<except i on> element. The attributes are shown in table 4-5.

Table 4-5. The attributes of the exception element

Name Description
id Currently not used.
className The implementation class of the configuration bean that will hold the

exception information. If specified, it must be a descendant of
org. apache. struts. confi g. Excepti onConfi g, which is the default
class when no value is specified.

handler The fully qualified Java class name of the exception handler that will
process the exception. If no value is specified, the default exception
handling class org.apache.struts.action.ExceptionHandler will be used.
If aclassis specified for this attribute, it must be a descendant of the
Except i onHandl er class.

key A message key that is specified in the resource bundle for this sub-
application. Thisvalue is used by the Act i onEr r or instance.

108

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

path The application-relative path of the resource to forward to if this
exception occurs. This attribute is optional and the framework will
default to the input attribute for the action mapping if no valueis
specified here.

scope Identifier of the scope level, where the Act i onEr r or instance should be
stored. The attribute value must either be “request” or “session”. This
attribute is optional and will default to “request” scope if not specified.

type The fully qualified Java class name of the exception that isto be
handled. This attribute is required because it identifies the exception,
which can’t be assumed by the framework.

Example 4-7 showsa<gl obal - excepti on> element.

Example 4-7. Configuring the global-exceptions element

<gl obal - excepti ons>
<exception
key="gl obal . error.invalidl ogi n"
pat h="/security/signin.jsp"
scope="request"
type="comoreilly.struts.franework. exceptions. | nval i dLogi nException"/>
</ gl obal - except i ons>

Currently, there’s no way to specify which bundle the key attribute in
the <exception> element should come from. The only choice is the
default bundle. There is however, an enhancement request entered for
this feature to be added.

The global-forwards Element

The <gl obal - f or war ds> section allows you to configure application level mappings
of logical names to application relative URI paths. The <gl obal - f or war ds> section
consists of zero or more <f or war d> elements as shown here.

| <! ELEMENT gl obal -forwards (forward*)>

The <f or war d> element maps a logical hame to an application relative URI path. The
application can then perform aforward or redirect, using use the logical name rather than
the literal URI. This helps to decouple the controller and model logic from the view. The
<f or war d> element can be defined both at the global level and also at the action level.
If a forward with the same name is defined at both places, the action level will take
precedence.

The declaration of the <f or war d> element illustrates that it also has several child
elements.

| <! ELEMENT forward(icon?, display-nane?, description, set-property*)>

As with the exception element, the attributes are probably more interesting than the child
elements. The attributes for the <f or war d> element are shown in table 4-6.

109

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table 4-6. The attributes of the forward element

Name Description

className The implementation class of the configuration bean that will hold the
forward information. If specified, it must be a descendant of
or g. apache. struts. confi g. Forwar dConfi g. The cl ass
org. apache. struts. acti on. Acti onFor war d is the default class when
no value is specified. This attribute is not required.

contextRelative Set to true to indicate that the resource specified in the path attribute
should be interpreted as application relative if the path starts with a*/”
character. Thisis so the resource specified by the path attribute can
reside in another sub-application. This attribute is not required and the
default valueisfalse.

name A unique value that is used to reference this forward in the application.
This attribute is required.

path An application relative or content relative URI to which control should
be forwarded or redirected to. This attribute is required.

redirect A boolean value that determines whether the Request Pr ocessor

should perform aforward or a redirect when using this forward
mapping. This attribute is not required and the default valueis false,
which means that a forward will be performed.

The contextRelative attribute for the forward element is very important.
If the path attribute starts with a*“/” and doesn’t provide a value for this
attribute or specifies it as false, the controller will append the sub-
application prefix onto the path when it performs the actual forward
through the Request D spat cher. This may cause a 404 error if by
adding the sub-application prefix causes the resource not to be found.

The or g. apache. struts. acti on. Acti onForwar d class is used to hold the information
configured in the controller element. The ActionForward class now extends
org. apache. struts. confi g. Forwar dConf i g for backwards compatibility, but it has not
yet been deprecated.

The action-mappings Element

The <act i on- mappi ngs> element configures the mappings from submitted request
paths to the corresponding Acti on classes for a particular sub-application. The
<act i on- mappi ngs> element can contain zero or more <act i on> elements.

| <! ELEMENT acti on- nappi ngs (action*)>

The <action> element describes a mapping from a specific request path to a
corresponding Act i on class. The controller selects a particular mapping by matching
the URI path in the request with the path attribute for an action mapping.

110

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The action element contains the following child elements.

<! ELEMENT action (icon?, display-name?, description, set-property*, exception*,
f orwar d*) >

There are two child elements that may stand out in the list of children for the <act i on>
element. They should stand out because you've already seen both of them earlier in the
chapter. They are the <except i on> element and the <f or war d> element, both of
which you have seen before.

Y ou saw the exception element earlier in this chapter when we discussed the <gl obal -
except i ons> element. We mentioned then that exception elements could be defined at
the global, or at the action level. The exception elements defined here within the action
element take precedence over the ones defined at the global level. The syntax and
attributes are the same when defined here asthey are in the global -exceptions element.

Y ou've also seen the forward element earlier in reference to the global-forwards element.
As with the exceptions, a forward element can be defined both at a global level and at the
action level. The action level will take precedence if the same forward is defined in both
locations.

The<act i on> element contains quite afew attributes. They are shown in table 4-7.

Table 4-7. The attributes for the action element

Name Description

className The implementation class of the configuration bean that will hold the
action information. If specified, it must be a descendant of
org. apache. struts. confi g. Acti onConfi gclass. The
org. apache. struts. acti on. Acti onMappi ng classisthe
default class when no value is specified. This attribute is optional.

attribute The name of the request or session scope attribute under which the
form bean for this action can be accessed. A valueis only allowed here
if there is aform bean specified in the name attribute. This attribute is
optional and has no default value.

forward Application-relative path of the servlet or JSP resource that will process
this request, instead of instantiating and calling the Act i on class
specified by the type attribute. The attributes forward, include, and type
are mutually exclusive and only one can be specified for an action. This
attribute is optional.

include Application -relative path of the servlet or JSP resource that will
process this request, instead of instantiating and calling the Act i on
class specified by the type attribute. The attributes forward, include, or
type are mutually exclusive and only one can be specified for an action.
This attribute is optional.

111

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

name The name of the form bean, if any, that is associated with this action.
This value must be the name attribute from one of the form-bean
elements defined earlier. This attribute is optional and has no default
value.

path The application-relative path of the submitted request, starting with a
“I" character and without the filename extension if extension mapping
isused. In other words, thisis the name of the action. For example,
“/addToShoppingCart” is an example of a path for an action. Thisvalue
isrequired. This attribute probably should have been called “name”
because it really is the name of the action.

parameter General purpose configuration parameter that can be used to pass extra
information to the action instance selected by this action mapping. The
core framework does not use this value in any way. If you provide a
value here, you can obtain it in your Act i on subclass by calling the
get Par anet er () method on the mapping passed to the
execut e() method.

prefix The prefix used to match request parameter names to form bean
property names. Y ou can only provide a value here if the name attribute
is specified.

scope This attribute is used to identify which scope level the form beanis

placed. It can either be “request” or “session”. It can only be specified
if the name attribute is present. The default valueis “session”.

suffix The suffix is used to match request parameter names to form bean
property names. Y ou can only provide avalue here if the name attribute
is specified.

type A fully qualified Java class name that extends

org. apache. struts. acti on. Acti on class, which is used to process
the request if the forward or include attribute is not specified. Only one
of these three attributes can be specified for a particular action
mapping.

unknown A boolean value indicating if this action should be configured as the
default for this application. If this attribute is set to true, this action will
handle any request that is not handled by another action. Only one
action per application can have this value set to true. This attribute is
optional and defaultsto false. Thisis agood place to setup a default
action that will catch any invalid action URL entered by the user.

validate A boolean value indicating whether the val i dat e() method of the
form bean, specified by the name attribute, should be called prior to

caling theexecut e() method of thisaction. Thisattributeis
optional and will default to true.

Theor g. apache. struts. acti on. Acti onMappi ng classis used to hold
the information configured in the controller element. The
Act i onMappi ng class now extends

112

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

org. apache. struts. config. Acti onConfi g for backwards
compeatibility, but has not yet been deprecated.

The controller Element

The <controll er> element is new to version 1.1. Prior to version 1.1, the
Act i onSer vl et contained the controller functionality and you had to extend that class
to override the functionality. In version 1.1 however, Struts has moved most of the
controller functionality to the new Request Processor class. The ActionServl et ill
receives the requests, but then delegates the request handling to an instance of the
Request Processor class that has been installed. This allows you to declaratively assign
the processor class and modify its functionality.

If you're familiar with version 1.0, you'll notice that many of the parameters that were
configured in the web.xml for the controller servlet are now configured for the
<control | er > element here. Since the controller and its attributes are defined in the
struts-config.xml, you can define a separate <control | er > element for each sub-
application. The declaration of the <control | er > element illustrates that is has a
single child element.

| <! ELEMENT control | er (set-property*)>

The <contr ol | er > element can contain zero or more <set - pr opert y> elements
and many different attributes. The attributes are shown in table 4-8.

Tabled-8. The attributes for the controller element

Name Description
id Currently not used.
className The implementation class of the configuration bean that will hold the

controller information. If specified, it must be a descendant of
org. apache. struts. config. Control | er Confi g, which isthe default
class when no value is specified. This attribute is not required.

bufferSize The size of the input buffer used when processing file uploads. This
attribute is optional and the default value is 4096.

contentType The default content type and optional character encoding that gets set
for each response. This attribute is not required and the default valueis
“text/html”. Even when avalueis specified here, an action or a JSP
page may overrideit.

debug The debugging level for this application. The value is used throughout
the framework to determine how verbose the logging information
should be for events that take place internally. The larger the value, the
more verbose the logging is. This attribute is not required and the
default value is 0, which causes little or no logging information to be
written out.

113

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

locale A boolean value indicating whether the user’s preferred Localeis
stored in the user’ s session if not already present. This attribute is not
required and the default value is true.

maxFileSize The maximum size (in bytes) of afileto be accepted as a file upload.
This value can be expressed as a number followed by a“K”, “M”, or
“G", whichisinterpreted to mean kilobytes, megabytes, or gigabytes
respectively. This attribute is not required and the default value is
“250M”.

multipartClass The fully qualified Java class name of the multipart request handler
classto be used. Thisattribute is not required and the default value is
or g. apache. struts. upl oad. D skMil ti part Request Handl er.

nocache A boolean value indicated that the framework should set nocache
HTTP headersin every response. This attribute is not required and the
default value isfalse.

processorClass The fully qualified Java class name of the request processor class to be
used to process requests. The value specified here should a descendant
of org. apache. struts. acti on. Request Processor. Thisattributeis
not required and the default value is
or g. apache. struts. acti on. Request Pr ocessor.

tempDir A temporary working directory that is used when processing file
uploads. This attribute is not required and the servlet container will
assign a default value for each web application.

The org.apache. struts.config. ControllerConfig class is used to hold the
information configured in the controller element. The following fragment shows an
example of how to configurethe <cont r ol | er > element.

<control | er
cont ent Type="t ext/ ht ni ; char set =UTF- 8"
debug="3"
| ocal e="true"
nocache="true"
processor A ass="comoreilly.struts.framework. Qust onRequest Processor "/ >

The message-resources Element

The <nmessage-resources> element specifies characteristics of the message
resource bundles that contain the localized messages for an application. Each Struts
configuration file can define one more message resource bundles. Each sub-application
can define its own bundles. The declaration of the <nessage- r esour ces> element
shows that it contains no child elements.

| <! ELEMENT nessage- r esour ces EMPTY>

The entire configuration for this element is done through the attributes as shown in table
4-9.

114

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Table 4-9. The attributes for the message-resources element

Name Description
id Currently not used.
className The implementation class of the configuration bean that will hold the

message-resources information. If specified, it must be a descendant of
org. apache. struts. confi g. MessageResour cesConf i g, which isthe
default class when no value is specified. This attribute is optional .

factory The fully qualified Java class name of the MessageResour cesFact ory
class that should be used. This attribute is optional. The default value is
org. apache. struts. util. PropertyMessageResour cesFact ory.

key The servlet context attribute key that this message resource bundle will
be stored under. This attribute is optional. The default value is specified
by the string constant Act i on. MESSAGES KEY.

null A boolean value indicating how the MessageResour ces subclass
should handle the case when a unknown message key is used. If this
valueis set to true, anull string will be returned. If set to false, a
message that looks something like this“ ???global.label.missing???”
will be returned. The actual message will contain the bad key. This
attribute is optional. The default value istrue.

parameter This attribute is the base name of the resource bundle. For example, if
the name of your resource bundle is ApplicationResources.properties,
you should set the parameter value to ApplicationResources. A better
name could have probably been found for this attribute. This attribute is
required.

The following example shows how to configure multiple <nessage-r esour ces>
elements for a single application. Notice that the second element had to specify the key
attribute, since there can be only one stored with the default key.

<nessage-r esour ces par anet er =" St or ef r ont MessageResour ces” nul | ="f al se"/ >
<message- r esour ces

key="1 MACE_RESOURCE_KEY"

par anet er =" St or ef r ont | nageResour ces"

nul | ="fal se"/>

The plug-in Element

The plug-in element specifies a fully qualified class name of a general-purpose
application plug-in module that receives notification of application startup and shutdown
events. An instance of the specified classis created for each element and the init method
is called when the application is started and the destroy method when the application is
stopped. The class specified here must implement the
org. apache. struts. action. Pl ugl n interface and implement the init and destroy
methods.

115

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

This behavior is very similar to what servlet filters and/or application event listeners can
provide based on the Servlet 2.3 specification. However, the difference is that the class
doesn't have to be coupled to a servlet container.

The declaration of the plug-in element shows that it may contain zero or more set-
property elements, so that extra configuration information may be passed to your class.

| <! ELEMENT pl ug-in (set-property*)>
The alowed attributes for the <pl ug- i n> element are shown in table 4-10.

Table 4-9. The attributes for the plug-in element

Name Description
id Currently not supported.
className The fully qualified Java class name of the plug-in class. It must

implement the Pl ugl n interface.

The following fragment shows how the plug-in element can be configured in the Struts
configuration file.

<pl ug-in cl assNanme="comoreilly.struts.framework. dat abase. Dat abaseP ugl n">

<set-property property="debug" val ue="true"/ >
<set-property property="pathnane" val ue="/WEB-| NF/ dat abase. properties"/>
</ pl ug-in>

Up to this point, you haven't seen a full example of a Struts configuration file. Example
4-8 provides a complete listing.

Example 4-8. A complete Struts configuration file

<?xm version="1.0" encodi ng="UTF-8" ?>

<! DOCTYPE struts-config PUBLIC
"~/ Apache Software Foundation//DID Struts Configuration 1.1//EN'
"http://jakarta.apache. org/struts/dtds/struts-config 1 1.dtd">

<struts-config>

<l--
<dat a- sour ces>
<dat a- sour ce>
<set-property property="autoCommt" val ue="true"/>
<set-property property="description" val ue="Resin Data Source"/>
<set-property property="driverd ass" val ue="com caucho. j dbc. nysql .Driver"/>
<set-property property="nmaxCount" val ue="10"/>
<set-property property="mnCount" val ue="2"/>
<set-property property="user" val ue="admn"/>
<set-property property="password" val ue="admn"/>
<set-property property="url" val ue="j dbc: nysql -
caucho: / /1 ocal host : 3306/ st orefront "/ >
</ dat a- sour ce>
</ dat a- sour ces>
-->

116

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<f or m beans>
<f or m bean
nane="1 ogi nFor ni
type="comoreilly.struts.storefront. security.Logi nForni/>
<f or m bean
name="1it enDet ai | For mf
dynam c="true"
type="org. apache. struts. acti on. DynaAct i onFor ni >
<formproperty name="view' type="comoreilly.struts.catal og.view |tenM ew'/>
</ f or m bean>
</ f or m beans>

<gl obal - excepti ons>
<exception
key="gl obal . error.invalidl ogi n"
pat h="/security/signin.jsp"
scope="r equest "
type="comoreilly.struts.franework. exceptions. | nval i dLogi nException"/>
</ gl obal - excepti ons>

<gl obal - f or war ds>
<forward name="Logi n" path="/security/signin.jsp" redirect="true"/>
<forward name="Systentail ure" path="/comon/systenerror.jsp"/>
<f orwar d
nanme="Sessi onTi neQut "
pat h="/ common/ sessi ont i meout . j sp"
redirect="true"/>
</ gl obal - f or war ds>

<act i on- nappi ngs>

<action

pat h="/vi ewsi gni n"

par anet er ="/ securi ty/ si gnin.jsp"

type="or g. apache. struts. acti ons. Forwar dAct i on"
scope="request "

name="1 ogi nFor nt

val i dat e="f al se"

i nput ="/i ndex. j sp">
</ action>
<action

pat h="/si gni n"
type="comoreilly.struts.storefront.security.Logi nAction"
scope="request "

name="1 ogi nFor nt

val i date="true"

i nput ="/ security/signin.jsp">

<f orward nane="Success" path="/index.jsp" redirect="true"/>
<forward nane="Fail ure" path="/security/signin.jsp" redirect="true"/>
</ action>

<action

pat h="/si gnof f "
type="comoreilly.struts.storefront.security.Logout Action"
scope="request "

val i dat e="f al se"

i nput ="/security/signin.jsp">

117

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

<f orward nane="Success" path="/index.jsp" redirect="true"/>
</ action>
<action
pat h="/ hore"
par anet er ="/ i ndex. j sp"
type="or g. apache. strut s. act i ons. Forwar dAct i on"
scope="request "
val i date="fal se" >
</ action>
<action
pat h="/vi encart"
par anet er ="/ or der / shoppi ngcart . j sp”
type="or g. apache. struts. acti ons. Forwar dAct i on"
scope="request"
val i date="f al se">
</ action>
<action path="/cart"
type="comoreilly.struts.storefront. order. Shoppi ngCart Acti ons
scope="r equest "
i nput ="/ or der / shoppi ngcart.j sp"
val i date="f al se"
par anet er =" met hod" >
<f orward nane="Success" path="/action/viewart" redirect="true"/>
</ action>
<action
pat h="/vi ew tendetai | "
nane="i t enDet ai | For n{
i nput ="/1i ndex. j sp"
type="comoreilly.struts.storefront. catal og. GetltenDetail Action"
scope="request"
val i date="f al se">
<f orward nanme="Success" path="/catal og/itendetail.jsp"/>
</ action>

<action
pat h="/ begi ncheckout "
i nput ="/ or der / shoppi ngcart.j sp”
type="comoreilly.struts.storefront. order. Checkout Acti on"
scope="request "
val i date="f al se">
<f orward nanme="Success" pat h="/order/checkout.jsp"/>

</ action>

<action
pat h="/ get or der hi st ory"
i nput ="/ order/ orderhistory.jsp"
type="comoreilly.struts.storefront.order.Get O derH storyAction"
scope="request "
val i date="f al se">
<f orward nanme="Success" path="/order/orderhistory.jsp"/>

</ action>

</ act i on- mappi ngs>

<control | er
cont ent Type="t ext/ ht ni ; char set =UTF- 8"
debug="3"

118

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| ocal e="true"
nocache="true"
processor d ass="comoreilly.struts.framework. Qust onRequest Processor"/ >

<nessage- r esour ces
par anet er =" St or ef r ont MessageResour ces”
nul | ="fal se"/>

<nessage- r esour ces
key="1 MACGE_RESCOURCE _KEY"
par anet er =" St or ef r ont | nageResour ces”
nul | ="fal se"/>

</ struts-config>

Using M ultiple Sub-Applications

Now that you've seen how to configure the default application for Struts, the last step is
to discuss how you include multiple sub-applications. Fortunately, it's very easy. The
steps necessary are to first create the additional Struts configuration files. Let’s suppose
that we created a second called struts-order-config.xml. The first step is to modify the
web.xml file for the application and add an addition init-param for the sub-application.
This was shown earlier in the chapter, but it’s repeated here for convenience. Example 4-
9 shows the servlet instance mapping from before with an addition init-param for the
second Struts configuration file.

Example 4-9. A partial web.xml that illustrates how to configure multiple sub-
applications

<servl et >
<servl et - nane>st or ef r ont </ ser vl et - name>
<servl et - cl ass>or g. apache. struts. acti on. Acti onServl et </ servl et - cl ass>
<ini t - parane
<par am nanme>conf i g</ par am nanme>
<par am val ue>/ WEB- | NF/ st r ut s- confi g. xn </ par am val ue>
</init-paran»

<ini t - parane

<par am name>conf i g/ or der </ par am nane>

<par am val ue>/ WEB- | NF/ st r ut s- or der - conf i g. xm </ par am val ue>
</init-paran»
<ini t - parane

<par am nane>debug</ par am nane>
<par am val ue>3</ par am val ue>
</init-parany
<init-param
<par am nane>det ai | </ par am name>
<par am val ue>3</ par am val ue>
</init-parany
<init-param
<par am name>val i dat i ng</ par am nane>
<par am val ue>t r ue</ par am val ue>
</init-parany
<l oad- on- st art up>1</ | oad- on- st art up>

119

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

| </servlet>

Notice that the param-name value for the non-default sub-application ex example 4-9
begins with config/ as in config/order. All non-default sub-application param-name
elements must begin with the config/ value. The default application contains the config
value alone. The part that comes after that is known as the sub-application prefix and is
used throughout the framework for intercepting requests and returning the correct
resources.

Fortunately, that is about all there isto configuring support for multiple sub-applications.
The last item of interest when configuring sub-applicationsis that you should pay special
attention to the configuration attributes available in the various Struts XML elements.
Some of them, as mentioned in this chapter, have a profound effect on how an application
operates in a multi-app environment.

Specifyinga DOCTY PE Element

To ensure that your Struts configuration file is valid, it can and should be validated
against the Struts DTD. To do this, you must include the DOCTYPE element at the
beginning of your Struts configuration XML file, similar to the following fragment.

<?xm version="1.0" encodi ng="1S0 8859-1" ?>

<I DOCTYPE struts-config PUBLIC

<struts-config>
etc...
</struts-config>

In earlier versions of the framework, there were some issues of applications not being
able to startup if they weren’t able to get to the Jakarta site and access the DTD from
there. However, thisis no longer true, since Struts provides local copies of the DTDs and
registers them with the Digester.

Although this is not recommended, there are some rare circumstances where you might
not want the framework to validate the Struts configuration file. Y ou can configure Struts
to bypass validation of the configuration file by adding an init-param to the web.xml file
with the name validating and a value of false. If there's no init-param with the name
validating, the default value is true and that’s why the configuration file is validated by
default.

Some users aso prefer to specify a SYSTEM DOCTY PE tag, rather than a PUBLIC one.
This allows you to specify an absolute path, over arelative one. Although this may solve
a short-term problem, it creates more long-term ones. You can’'t aways guarantee the
directory structure from one target environment to another. Also, different containers
seem to act differently when using a SYSTEM DOCTYPE tag. You are probably better

120

"-/1 Apache Software Foundation//DID Struts Configuration 1.1//EN
"http://jakarta. apache.org/struts/dtds/struts-config 1 1.dtd">

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

off not using it. However, if you decide that you need to do so, it should look something
similar to the following:

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>
<! DOCTYPE struts-config SYSTEM “file:///c:/dtds/struts-config_1 1.dtd">

<struts-config>
etc...
</ struts-config>

As you can see, the location of the DTDs is an absolute path. If the path of the target
environment is not the same, you'll have to make modifications to the XML file. Thisis
why this approach is not recommended.

Struts Console T ool

When developing on a small application, the Struts configuration is manageable. It’s still
XML, but typicaly it's small enough not to be much of a problem. Some developers use
XML editors while others use ordinary text editors. Both of these are fine when the
application is relatively small, but when you are working on a Struts project made up of
many different developers, the size and complexity of the file is quite enormous.

This is one of the reasons that the Struts console application was created. The Struts
Console was created by James Holmes and is a Java Swing application that provides an
easy to use interface for editing the Struts configuration files.

[Editors — Because development | still going on for the console that supports Struts 1.1, ,
I’m not able to complete this section yet. | will do so during author review. | have spoken
with the creator of the tool and he will send me a beta copy when it’'s available so that |
can make changes during author review. | will also need to provide some screen shots
then because they are not currently available. Chuck]

You can download the Struts console for free, although it's not open source software.
There is no license necessary, but you should check the web site to make sure this hasn't
changed. Y ou can download the Struts console from the following web site:

http: //www.jameshol mes.comvstruts/consol e/

You should be cautioned that the formatting of your Struts
configuration file might be lost when saving the file using the Console.
This is because it uses an XML parser to read in the configuration file
and the parser can’'t maintain the complete knowledge of how the file
was formatted. The Console however does a decent job of formatting
thefileitself and thisreally isn't abig problem.

121

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Reloading the Configuration Files

The web deployment descriptor is loaded and parsed when the web container is first
started. By default, changes to the descriptor are not detected and re-loaded while the
container is running. In fact, not many containers even provide this functionality. Thisis
typically not a wanted feature anyway due to the possible security issues involved.

The Struts configuration files are also loaded and parsed when the container is launched.
Changes to these are also not automatically detected. The same security issues are
present. Another problem occurs for any user currently using the system. The session
information may be destroyed and the user will definitely get an ugly error the next time
they try to perform an action.

Some developers and products still may required or desire the ability to reload the Struts
configuration files without restarting the web container. If your application is one of
them, they are ways that you can do it. There are two distinct approaches that you can try.
One is where you create an actual Struts action that will re-initialize the ActionServlet.
You would obviously want to put some form of protection around which set of users
could call this action. Once the ActionServlet was re-initialized, everything would be new
and the application would service requests, just like before.

A different and more active approach would be to create a Thread that monitored the
lastModifiedTime of the configuration file. The Thread would sleep for a few seconds or
minutes and when awoke would compare the lastModifiedTime of the file against one
stored in a variable. If they were different, this means that the file has changed and it's
time to reload the application. This approach is nice because you don’t have to worry
about an unwelcome user reloading your application. However, the time that it gets
reloaded is entirely up to the Thread.

122

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

5

Struts Controller Components

As discussed in Chapter 1, the controller components are responsible for detecting user
input, possibly updating the domain model, and selecting the next view for the client. The
controller helps to separate the presentation of the model, from the actual model. This
separation gives you much more freedom to develop different types of presentations
based on the same domain model.

Using the concept of a controller allows provides a centralized point of control for the
application where al client requests can be processed first. Because the controller acts as
a mediator between the client input and the model, the controller is able to provide
common functionality such as security, logging, and other important services on behalf of
each client request.

Because al requests are filtered through the controller, the views are decoupled from the
business operations and from other view components. It's entirely up to the controller,
which view to return to the client. This might not seem like it adds much benefit, but it
creates flexibility for the application that you would otherwise not have.

The Struts framework uses a servlet to process incoming requests, however it relies on
many other components that are part of the controller domain, to help it carry out its
responsibilities. The Struts controller components have been briefly mentioned in
previous chapters, but it's time to take in-depth look at what components have
responsibility for the controller functionality in the framework.

123

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

The Controller Mechanism

As the J2EE design pattern Front Controller describes using a single controller to funnel
all client requests through a central point has many advantages. Services like security,
internationalization, and logging can then be centralized in the controller, which applies
these functions consistently for all requests. When the behavior of these services needsto
be modified, the change only needs to be made to an isolated area of the application.

You learned in Chapter 1 that the Struts controller has several responsibilities. Chiefly
among those are:

Intercept requests from the clients.
Trandate and map each request to a business operation.
Collect results from the business operation and make them available to the client.

Determine the view to display to the client based on the current state and result of the
business operation.

Within the Struts framework, there is not just one component that performs the controller
duties, there are actually several. Figure 5-1 illustrates a simple class diagram of the
components in the Struts framework that share some portion of that responsibility.

HttpServiet

BpplicationConfig

7N

|

\ActionServiet| 1

K7

1

\

Action RequestProcessor

I\ A

0. 1

Figure 5-1. Several different components have controller
responsibilities in the Sruts framework

124

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

[Editors: This diagramis a place holder for a better one that will be dropped in later]

There are other secondary components that are used by these controller components to
help fulfill their responsibilities. For now, let’s focus on the ones in Figure 5-1. Most all
of these classes have been introduced earlier in Chapters 2 and 3, but now will be
discussed in depth.

TheActi onSer vl et Class

The org.apache.struts.action.ActionServlet acts as the primary
controller for the Struts framework. All reguests from the client tier must pass through
this component before proceeding anywhere else in the application.

When the Act i onSer vl et receivesan Ht t pRequest , either through the doGet ()
or doPost () method, the process() method is called to handle the request. The
process() method of the Act i onSer vl et isshownin Example 5-1.

Example 5-1. The process() method in ActionServiet processes every Struts reguest

protected voi d process(HtpServl et Request request, HtpServl et Response response)
throws | CException, ServletException {

Request U0i | s. sel ect Application(request, getServletContext());
get Appl i cat i onConfi g(request). get Processor (). process(request, response);

The process() method might not look very complicated, but the methods that are
being invoked within it, surely are. First, the static sel ect Appl i cati on() method
intheor g. apache. struts. util.RequestUtil s classis caled and passed the
current request and the Ser vl et Cont ext for the web application. The job of the
sel ect Appl i cation() method is to select a sub-application to handle the current
reguest, by matching the path returned from the r equest . get Servl et Pat h() to
the prefix of each sub-application that has been configured.

If you only use a single Struts configuration file, then you will only
have a single application. This is known as the default application. To
make processing requests for the default application and the sub
applications simple and consistent, the default application is treated as
just another sub application. Therefore, any requests that don’t contain
an application suffix will get routed and handled by the default
application.

This sel ect Application() method will store the appropriate
Appl i cationConfig and MessageResour ces objects into the request. This
makes it easier for the rest of the framework to know which application and application
components should be utilized for the request.

125

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Extending the Act i onSer vl et Class

Prior to version 1.1, the Act i onSer vl et contained much of the code to process each
user request. Starting with 1.1 however, most of that functionality has been moved to
org. apache. struts. acti on. Request Processor class, which will be
discussed in the next section. This new class has been added to help relieve the
Act i onSer vl et from most of the controller burden.

Although the framework still allows you to extend the Act i onSer vl et , the benefit is
not as great as with earlier versions, since most of the functionality lies in the new
Request Processor class. If you would till like to use your own version, you just
need to create a class that extends Act i onSer vl et and configure the framework to
use this class instead of the one from Struts. Example 5-2 shows a Java serviet that
extends the Struts Act i onSer vl et and overridesthei ni t () method.

Example 5-2. The Struts ActionServiet can be extended to perform custom initialization
package comoreilly.struts.storefront.framework;

i nport javax.servlet. Servl et Exception;

i nport javax.servl et. Unavai |l abl eExcepti on;

i nport org.apache. struts. action. ActionServl et;

inport comoreilly.struts.storefront.service.|Storefront Service;
inport comoreilly.struts.storefront. service. Storefront Servicel npl ;

inport comoreilly.struts.storefront.franework.util.|Constants;
inport comoreilly.struts.storefront.franework. exceptions. Dat ast or eExcepti on;
/**

* Extend the Struts ActionServlet to performyour ow speci al
* initialization.

*/

public class ExtendedActionServlet extends ActionServlet {

public void init() throws Servl et Exception {

/1 Make sure to always call the super's init() first
super.init();

/1 Initialize the persistence service

try{
Il Oreate an instance of the service interface
St orefront Servi cel npl servicelnpl = new Storefront Servicel npl ();

/1 Store the service into the application scope
get Servl et Context ().set Attribute(|Constants. SERVI CE | NTERFACE KEY,
servicelnpl);

}cat ch(Dat ast oreException ex){
/1 1f there's a probleminitializing the service, disable the web app
ex. print StackTrace();
t hrow new Unavai | abl eExcepti on(ex. get Message());

}

}

126

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

Overriding the i ni t () method was chosen just as an example. You can override any
method that you need to. If you do override the i ni t () method as Example 5-2 does,
make sure that you call the super i ni t () method, so that the default initialization
OCCUrs.

Don't worry about what the code in Example 5-2 is doing for now. The
goal isto understand how to extend the Act i onSer vl et .

To configure the framework to use your Act i onSer vl et , instead of the default onein
the Struts framework, you'll also need to modify the web. xni file as was shown in
Chapter 4, and which is repeated here.

<servl et >
<servl et - nane>st or ef ront </ ser vl et - nane>
<servl et -cl ass>
comoreilly.struts.storefront.franework. Ext endedActi onSer vl et
</ servl et -cl ass>
</servl et>

StrutsInitialization Process

Depending on the initialization parameters configured in the web. xmi file, the serviet
container will either load the Struts Act i onSer vI et when the container is first started,
or when the first request arrives for the servlet. In either case, like any other Java servlet,
theinit () method is guaranteed to be called and must finish before any request is
processed by the serviet. The Struts framework performs all of the compulsory
initialization when this method is called. This section takes an inside ook at what all goes
on during that initialization process. Understanding these details will make debugging
and extending your applications that much easier.

There are many steps that occur when the init() method of the Struts
Act i onSer vl et isinvoked by the container.

1. Initiaize the framework’s internal message bundle. These messages are used to
output informational, warning, and error messages to the log files. The
org. apache. struts. action. Acti onResour ces bundle is used to obtain
the internal messages.

2. Load the initialization parameters from the web. xni file that control various
behaviors of the Act i onSer vl et . These parameters include conf i g, debug,
detail, and val i dati ng. For information on how these and other serviet
parameters affect the behavior of an application, refer to “ Declaring the Initialization
Parameters’ in Chapter 4.

3. Load and initidlize the servlet name and servlet mapping information from the
web. xm file. These values will be used throughout the framework, mostly by tag
libraries to output correct URL destinations when submitting HTML forms. During
this initialization, the DTDs that are used by the framework are also registered. The
DTDs are used to validate the configuration file in the next step.

127

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

4. Load and initialize the Struts configuration data for the default application, which is
specified by the conf i g initialization parameter. The default Struts configuration
file is parsed and an Appl i cati onConfi g object is created and stored in the
Servl et Context. The ApplicationConfig object for the default
application is stored in the ServletContext with a key value of
“ org.apache.struts.action.APPLICATION" .

5. Each message resource that is specified in the Struts configuration file for the default
application is loaded, initialized, and stored in the Ser vl et Cont ext at the
appropriate location based on the key attribute specified in each <nessage-
resour ces> element. If no key is specified, the message resource will be stored at
the key value “org.apache.struts.action.MESSAGE” . Obviously only one message
resource can be stored as the default, since keys have to be unique.

6. Next, load and initialize each data source that is has been declared in the Struts
configuration file. If no data sources are specified, this step is skipped.

7. Load and initialize each plug-in that is specified in the Struts configuration file. The
i ni t() method will be called on each and every plug-in specified.

8. Once the default application has been properly initialized, the servlet i nit ()
method will determine if there are any sub-applications specified and if so, it will
repeat steps 4 through 7 for each and every sub-application. The
Ser vl et Cont ext key where objects are stored will include the sub-application
suffix value, so as not to overwrite the default application values.

Figure 5-2 uses a sequence diagram to illustrate the 8 major steps that occur during the
initialization of the Act i onSer vl et .

128

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

it}

initntemal

:> initOther
D initServlet
[r— |
|> initApplicationCorfig
|
D initApplicationMessageResources

D initApplicationDataSources

D initApplicationPluglns

After the default application is initialized, each and every sub application is inftialized in the same mannar. ﬁ

Figure 5-2. Sequence Diagram of the init() method in the ActionServlet

You may be tempted to setup multiple Struts controller servlets for a
single application, in an attempt to achieve better performance. This
will most likely not result in better performance or scalability. Servlets
are multi-threaded and allow many clients to execute simultaneously. A
single servlet is capable of servicing many simultaneous clients.

The second step in Example 5-1 is to call the process() method of the
org. apache. struts. action. Request Processor. It's cdled by the
Act i onSer vl et instance and passed the current request and response objects.

TheRequest Processor Class

The org.apache.struts. action. Request Processor was added to
framework to alow developers to customize the request handling behavior for an
application. Although this type of customization was possible in previous versions by
extending the Act i onSer vl et it was necessary to introduce this new class to give
each sub-application the ability to have its own customized request handler. The
Request Processor class contains many methods that can be overridden if you need
to modify the default functionality.

129

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

As shown in Example 5-1, once the correct application for the request has been selected,
the process() method on the Request Processor is called to handle the request.
The behavior of the process() method in the Request Processor class is very
similar to how it looked in earlier versions of the Act i onSer vl et . It was just moved
to the new class. Exampl e 5-3 shows the implementation of the pr ocess() method

Example 5-3. The process() method of the RequestProcessor class handles every request

public void process(HtpServl et Request request, HtpServl et Response response)
throws | CException, ServletException {

// Wap multipart requests with a special w apper
request = processMil tipart(request);

/1 ldentify the path conponent we will use to select a mapping
String path = processPat h(request, response);
if (path == null) {

return;

}
if (log.islnfoEnabled()) {

Il Select a Locale for the current user if requested
pr ocessLocal e(request, response);

/1 Set the content type and no-cachi ng headers if requested
pr ocessCont ent (r equest, response);
pr ocessNoCache(request, response);

/1 General purpose preprocessing hook
if (!processPreprocess(request, response)) {
return;

}

/1 ldentify the mapping for this request
Act i onMappi ng nappi ng = processMappi ng(request, response, path);
if (mapping == null) {

return;

}

/1l Check for any role required to performthis action
if (!processRol es(request, response, mapping)) {
return;

}

/1 Process any ActionFormbean related to this request

Acti onForm form = processActi onForn{request, response, mnapping);

pr ocessPopul at e(request, response, form mapping);

if (!processValidate(request, response, form napping)) {
return;

}

130

log.info("Processing a '" + request.getMethod() + "' for path '" + path + "'

")

Copyright (c) 2002 O'Reilly and Associates, Inc. All rights reserved.

/'l Process a forward or include specified by this napping
if (!processForward(request, response, mapping)) {
return;

i f (!processlnclude(request, response, mapping)) {
return;
}

/Il Oreate or acquire the Action instance to process this request
Action action = processActi onCreat e(request, response, mapping);
if (action == null) {

return;
}

/1l Call the Action instance itself
ActionForward forward =
processActi onPer f or n{request, response, action, form napping);

/'l Process the returned ActionForward instance
pr ocessAct i onForwar d(request, response, forward);

}

As Example 5-3 shows, there’s quite a lot going on in the pr ocess() method of the
Request Processor . Let’s go through the method step by step.

1.

The first thing that occurs is a call to the pr ocessMul ti part () method. If the
Ht t pSer vl et Request method is a POST and the contentType of the request
starts with "multipart/form-data”, then the standard request object is wrapped with a
specia version from the Struts framework that deals exclusively with multipart
r